考虑Beddington-Deangelis发生率的隐孢子虫病传播动力学建模及稳定性分析

IF 0.5 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
{"title":"考虑Beddington-Deangelis发生率的隐孢子虫病传播动力学建模及稳定性分析","authors":"","doi":"10.28919/cmbn/8154","DOIUrl":null,"url":null,"abstract":"In this paper, a model describing the dynamics of Cryptosporidiosis is developed and analysed using ordinary differential equations with a non linear incidence called Beddington-DeAngelis function. We computed the basic reproduction number (Rha) using the next generation matrix method and carry out the stability analysis of the model equilibria. We applied the center manifold theory to investigate the local stability of the endemic equilibrium and found that the model exhibits a forward bifurcation at Rha=1. Further, the global stability of the endemic equilibrium is obtained under a certain condition using Lyapunov’s method and LaSalle’S invariance principle. The most sensitive parameters on the model outcome are also identified using the normalized forward sensitivity index. Finally, we performed numerical simulations and displayed then graphically to validate our analytical results, and the epidemiological implications of the key out comes were briefly discussed.","PeriodicalId":44079,"journal":{"name":"Communications in Mathematical Biology and Neuroscience","volume":"74 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling and stability analysis of cryptosporidiosis transmission dynamics with Beddington-Deangelis incidence\",\"authors\":\"\",\"doi\":\"10.28919/cmbn/8154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a model describing the dynamics of Cryptosporidiosis is developed and analysed using ordinary differential equations with a non linear incidence called Beddington-DeAngelis function. We computed the basic reproduction number (Rha) using the next generation matrix method and carry out the stability analysis of the model equilibria. We applied the center manifold theory to investigate the local stability of the endemic equilibrium and found that the model exhibits a forward bifurcation at Rha=1. Further, the global stability of the endemic equilibrium is obtained under a certain condition using Lyapunov’s method and LaSalle’S invariance principle. The most sensitive parameters on the model outcome are also identified using the normalized forward sensitivity index. Finally, we performed numerical simulations and displayed then graphically to validate our analytical results, and the epidemiological implications of the key out comes were briefly discussed.\",\"PeriodicalId\":44079,\"journal\":{\"name\":\"Communications in Mathematical Biology and Neuroscience\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Biology and Neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28919/cmbn/8154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Biology and Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28919/cmbn/8154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文建立了隐孢子虫病的动力学模型,并利用具有非线性关联的常微分方程(称为Beddington-DeAngelis函数)进行了分析。采用新一代矩阵法计算了基本再生数(Rha),并对模型平衡点进行了稳定性分析。应用中心流形理论研究了地方性平衡的局部稳定性,发现模型在Rha=1处出现正向分岔。进一步,利用Lyapunov方法和LaSalle不变性原理,在一定条件下得到了地方性平衡的全局稳定性。利用归一化前向灵敏度指数确定了影响模型结果的最敏感参数。最后,我们进行了数值模拟,并以图形方式展示了我们的分析结果,并简要讨论了关键出来的流行病学意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling and stability analysis of cryptosporidiosis transmission dynamics with Beddington-Deangelis incidence
In this paper, a model describing the dynamics of Cryptosporidiosis is developed and analysed using ordinary differential equations with a non linear incidence called Beddington-DeAngelis function. We computed the basic reproduction number (Rha) using the next generation matrix method and carry out the stability analysis of the model equilibria. We applied the center manifold theory to investigate the local stability of the endemic equilibrium and found that the model exhibits a forward bifurcation at Rha=1. Further, the global stability of the endemic equilibrium is obtained under a certain condition using Lyapunov’s method and LaSalle’S invariance principle. The most sensitive parameters on the model outcome are also identified using the normalized forward sensitivity index. Finally, we performed numerical simulations and displayed then graphically to validate our analytical results, and the epidemiological implications of the key out comes were briefly discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Biology and Neuroscience
Communications in Mathematical Biology and Neuroscience COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
2.10
自引率
15.40%
发文量
80
期刊介绍: Communications in Mathematical Biology and Neuroscience (CMBN) is a peer-reviewed open access international journal, which is aimed to provide a publication forum for important research in all aspects of mathematical biology and neuroscience. This journal will accept high quality articles containing original research results and survey articles of exceptional merit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信