Thomas Mattern, Klemens Pütz, Hannah Mattern, David Houston, Robin Long, Bianca Keys, Jeff White, Ursula Ellenberg, Pablo Garcia-Borboroglu
{"title":"使用基于无人机的2D和3D摄影测量对悬崖繁殖的邦蒂岛鲨鱼进行准确的丰度估计","authors":"Thomas Mattern, Klemens Pütz, Hannah Mattern, David Houston, Robin Long, Bianca Keys, Jeff White, Ursula Ellenberg, Pablo Garcia-Borboroglu","doi":"10.5751/ace-02496-180206","DOIUrl":null,"url":null,"abstract":"Effective seabird management strategies rely on accurate population estimates, with previous methods typically employing ground counts of a target species. However, difficult and often inaccessible breeding habitats are now able to be explored due to recent technological advancements in Unoccupied Aerial Vehicles (UAVs). This study tested a novel approach by combining high-resolution orthomosaics and 3D models to provide population estimates of the remote cliff-breeding Bounty Island shag (<em>Leucocarbo ranfurlyi</em>) on the sub-Antarctic Bounty Islands in November 2022. Our results report 573 breeding pairs, estimating a total population of approximately 1733 birds, breeding on 13 of the 14 main islands. Given the topographical constraints of surveying the islands by boat, the most comparable assessment in 1978 shows a similar count of breeding pairs, proposing the Bounty Island shag population is stable. However, long-term monitoring and additional research surrounding foraging strategies is crucial for developing conservation efforts for one of the rarest and spatially restricted shag species in the world. Our study demonstrates a reproducible method for estimating elusive wildlife populations that can be used across species with wider applications.","PeriodicalId":49233,"journal":{"name":"Avian Conservation and Ecology","volume":"1 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accurate abundance estimation of cliff-breeding Bounty Island shags using drone-based 2D and 3D photogrammetry\",\"authors\":\"Thomas Mattern, Klemens Pütz, Hannah Mattern, David Houston, Robin Long, Bianca Keys, Jeff White, Ursula Ellenberg, Pablo Garcia-Borboroglu\",\"doi\":\"10.5751/ace-02496-180206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effective seabird management strategies rely on accurate population estimates, with previous methods typically employing ground counts of a target species. However, difficult and often inaccessible breeding habitats are now able to be explored due to recent technological advancements in Unoccupied Aerial Vehicles (UAVs). This study tested a novel approach by combining high-resolution orthomosaics and 3D models to provide population estimates of the remote cliff-breeding Bounty Island shag (<em>Leucocarbo ranfurlyi</em>) on the sub-Antarctic Bounty Islands in November 2022. Our results report 573 breeding pairs, estimating a total population of approximately 1733 birds, breeding on 13 of the 14 main islands. Given the topographical constraints of surveying the islands by boat, the most comparable assessment in 1978 shows a similar count of breeding pairs, proposing the Bounty Island shag population is stable. However, long-term monitoring and additional research surrounding foraging strategies is crucial for developing conservation efforts for one of the rarest and spatially restricted shag species in the world. Our study demonstrates a reproducible method for estimating elusive wildlife populations that can be used across species with wider applications.\",\"PeriodicalId\":49233,\"journal\":{\"name\":\"Avian Conservation and Ecology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Avian Conservation and Ecology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5751/ace-02496-180206\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Avian Conservation and Ecology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5751/ace-02496-180206","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
Accurate abundance estimation of cliff-breeding Bounty Island shags using drone-based 2D and 3D photogrammetry
Effective seabird management strategies rely on accurate population estimates, with previous methods typically employing ground counts of a target species. However, difficult and often inaccessible breeding habitats are now able to be explored due to recent technological advancements in Unoccupied Aerial Vehicles (UAVs). This study tested a novel approach by combining high-resolution orthomosaics and 3D models to provide population estimates of the remote cliff-breeding Bounty Island shag (Leucocarbo ranfurlyi) on the sub-Antarctic Bounty Islands in November 2022. Our results report 573 breeding pairs, estimating a total population of approximately 1733 birds, breeding on 13 of the 14 main islands. Given the topographical constraints of surveying the islands by boat, the most comparable assessment in 1978 shows a similar count of breeding pairs, proposing the Bounty Island shag population is stable. However, long-term monitoring and additional research surrounding foraging strategies is crucial for developing conservation efforts for one of the rarest and spatially restricted shag species in the world. Our study demonstrates a reproducible method for estimating elusive wildlife populations that can be used across species with wider applications.
期刊介绍:
Avian Conservation and Ecology is an open-access, fully electronic scientific journal, sponsored by the Society of Canadian Ornithologists and Birds Canada. We publish papers that are scientifically rigorous and relevant to the bird conservation community in a cost-effective electronic approach that makes them freely available to scientists and the public in real-time. ACE is a fully indexed ISSN journal that welcomes contributions from scientists all over the world.
While the name of the journal implies a publication niche of conservation AND ecology, we think the theme of conservation THROUGH ecology provides a better sense of our purpose. As such, we are particularly interested in contributions that use a scientifically sound and rigorous approach to the achievement of avian conservation as revealed through insights into ecological principles and processes. Papers are expected to fall along a continuum of pure conservation and management at one end to more pure ecology at the other but our emphasis will be on those contributions with direct relevance to conservation objectives.