{"title":"一个与先多夫猜想有关的结果","authors":"Robert Dalmasso","doi":"10.4064/ap221118-1-6","DOIUrl":null,"url":null,"abstract":"The Sendov conjecture asserts that if $p(z) = \\prod_{j=1}^{N}(z-z_j)$ is a polynomial with zeros $|z_j| \\leq 1$, then each disk $|z-z_j| \\leq 1$ contains a zero of $p'$. Our purpose is the following: Given a zero $z_j$ of order $n \\geq 2$, determine whether there exists $\\zeta \\not= z_j$ such that $p'(\\zeta) = 0$ and $|z_j - \\zeta| \\leq 1$. In this paper we present some partial results on the problem.","PeriodicalId":55513,"journal":{"name":"Annales Polonici Mathematici","volume":"37 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A result related to the Sendov conjecture\",\"authors\":\"Robert Dalmasso\",\"doi\":\"10.4064/ap221118-1-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Sendov conjecture asserts that if $p(z) = \\\\prod_{j=1}^{N}(z-z_j)$ is a polynomial with zeros $|z_j| \\\\leq 1$, then each disk $|z-z_j| \\\\leq 1$ contains a zero of $p'$. Our purpose is the following: Given a zero $z_j$ of order $n \\\\geq 2$, determine whether there exists $\\\\zeta \\\\not= z_j$ such that $p'(\\\\zeta) = 0$ and $|z_j - \\\\zeta| \\\\leq 1$. In this paper we present some partial results on the problem.\",\"PeriodicalId\":55513,\"journal\":{\"name\":\"Annales Polonici Mathematici\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Polonici Mathematici\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4064/ap221118-1-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Polonici Mathematici","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4064/ap221118-1-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
The Sendov conjecture asserts that if $p(z) = \prod_{j=1}^{N}(z-z_j)$ is a polynomial with zeros $|z_j| \leq 1$, then each disk $|z-z_j| \leq 1$ contains a zero of $p'$. Our purpose is the following: Given a zero $z_j$ of order $n \geq 2$, determine whether there exists $\zeta \not= z_j$ such that $p'(\zeta) = 0$ and $|z_j - \zeta| \leq 1$. In this paper we present some partial results on the problem.
期刊介绍:
Annales Polonici Mathematici is a continuation of Annales de la Société Polonaise de Mathématique (vols. I–XXV) founded in 1921 by Stanisław Zaremba.
The journal publishes papers in Mathematical Analysis and Geometry. Each volume appears in three issues.