一个与先多夫猜想有关的结果

Pub Date : 2023-01-01 DOI:10.4064/ap221118-1-6
Robert Dalmasso
{"title":"一个与先多夫猜想有关的结果","authors":"Robert Dalmasso","doi":"10.4064/ap221118-1-6","DOIUrl":null,"url":null,"abstract":"The Sendov conjecture asserts that if $p(z) = \\prod_{j=1}^{N}(z-z_j)$ is a polynomial with zeros $|z_j| \\leq 1$, then each disk $|z-z_j| \\leq 1$ contains a zero of $p'$. Our purpose is the following: Given a zero $z_j$ of order $n \\geq 2$, determine whether there exists $\\zeta \\not= z_j$ such that $p'(\\zeta) = 0$ and $|z_j - \\zeta| \\leq 1$. In this paper we present some partial results on the problem.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A result related to the Sendov conjecture\",\"authors\":\"Robert Dalmasso\",\"doi\":\"10.4064/ap221118-1-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Sendov conjecture asserts that if $p(z) = \\\\prod_{j=1}^{N}(z-z_j)$ is a polynomial with zeros $|z_j| \\\\leq 1$, then each disk $|z-z_j| \\\\leq 1$ contains a zero of $p'$. Our purpose is the following: Given a zero $z_j$ of order $n \\\\geq 2$, determine whether there exists $\\\\zeta \\\\not= z_j$ such that $p'(\\\\zeta) = 0$ and $|z_j - \\\\zeta| \\\\leq 1$. In this paper we present some partial results on the problem.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4064/ap221118-1-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4064/ap221118-1-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Sendov猜想断言,如果$p(z) = \prod_{j=1}^{N}(z-z_j)$是一个带零的多项式$|z_j| \leq 1$,那么每个磁盘$|z-z_j| \leq 1$包含一个零$p'$。我们的目的如下:给定订单$n \geq 2$的零$z_j$,确定是否存在$\zeta \not= z_j$,以便$p'(\zeta) = 0$和$|z_j - \zeta| \leq 1$。本文给出了该问题的部分结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A result related to the Sendov conjecture
The Sendov conjecture asserts that if $p(z) = \prod_{j=1}^{N}(z-z_j)$ is a polynomial with zeros $|z_j| \leq 1$, then each disk $|z-z_j| \leq 1$ contains a zero of $p'$. Our purpose is the following: Given a zero $z_j$ of order $n \geq 2$, determine whether there exists $\zeta \not= z_j$ such that $p'(\zeta) = 0$ and $|z_j - \zeta| \leq 1$. In this paper we present some partial results on the problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信