生物皮瓣在NACA 4415上应用的数值分析

James Julian, Saphira Anggraita Siswanto, Fitri Wahyuni, Nely Toding Bunga
{"title":"生物皮瓣在NACA 4415上应用的数值分析","authors":"James Julian, Saphira Anggraita Siswanto, Fitri Wahyuni, Nely Toding Bunga","doi":"10.35814/asiimetrik.v5i2.4768","DOIUrl":null,"url":null,"abstract":"This study was conducted using the Computational Fluid Dynamics (CFD) method using the Reynolds Averaged Navier Stokes (RANS) approach. The type of airfoil used in this study is the asymmetry NACA 4415 airfoil type. In this paper, computational tests were carried out on the airfoil with the addition of bionic flaps on its trailing edge. This study's update tests three variations of the Reynolds number: Re = 106, Re = 5 × 105, and Re = 3 × 105. The airfoil test was carried out at AoA 0°–25°. The addition of bionic flaps causes a decrease in lift performance at low AoA, but at high AoA, it can increase lift performance on airfoils. In addition, adding a bionic flap on the airfoil can delay the occurrence of a stall. At AoA 10°–13°, the Cd of the three variations of the Reynolds number experiences an increase in performance. Then, from this computational test, the resulting Coefficient moment (Cm) is a pitch down because the torque is below zero.","PeriodicalId":490621,"journal":{"name":"Jurnal Asiimetrik","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of the Use of Bio Flap on NACA 4415 with Numerical Methods\",\"authors\":\"James Julian, Saphira Anggraita Siswanto, Fitri Wahyuni, Nely Toding Bunga\",\"doi\":\"10.35814/asiimetrik.v5i2.4768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study was conducted using the Computational Fluid Dynamics (CFD) method using the Reynolds Averaged Navier Stokes (RANS) approach. The type of airfoil used in this study is the asymmetry NACA 4415 airfoil type. In this paper, computational tests were carried out on the airfoil with the addition of bionic flaps on its trailing edge. This study's update tests three variations of the Reynolds number: Re = 106, Re = 5 × 105, and Re = 3 × 105. The airfoil test was carried out at AoA 0°–25°. The addition of bionic flaps causes a decrease in lift performance at low AoA, but at high AoA, it can increase lift performance on airfoils. In addition, adding a bionic flap on the airfoil can delay the occurrence of a stall. At AoA 10°–13°, the Cd of the three variations of the Reynolds number experiences an increase in performance. Then, from this computational test, the resulting Coefficient moment (Cm) is a pitch down because the torque is below zero.\",\"PeriodicalId\":490621,\"journal\":{\"name\":\"Jurnal Asiimetrik\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Asiimetrik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35814/asiimetrik.v5i2.4768\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Asiimetrik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35814/asiimetrik.v5i2.4768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用计算流体动力学(CFD)方法,采用Reynolds平均Navier Stokes (RANS)方法。在这项研究中使用的翼型的类型是不对称的NACA 4415型翼型。本文对后缘加装仿生襟翼的翼型进行了计算试验。这项研究的更新测试了雷诺数的三种变化:Re = 106, Re = 5 × 105和Re = 3 × 105。翼型试验在AoA 0°-25°进行。在低AoA时,仿生襟翼的加入会导致升力性能下降,但在高AoA时,仿生襟翼的加入可以提高翼型的升力性能。此外,在机翼上增加一个仿生襟翼可以延缓失速的发生。在AoA为10°~ 13°时,三种雷诺数的Cd值均有提高。然后,从这个计算测试中,得到的系数矩(Cm)是一个俯仰下降,因为扭矩低于零。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of the Use of Bio Flap on NACA 4415 with Numerical Methods
This study was conducted using the Computational Fluid Dynamics (CFD) method using the Reynolds Averaged Navier Stokes (RANS) approach. The type of airfoil used in this study is the asymmetry NACA 4415 airfoil type. In this paper, computational tests were carried out on the airfoil with the addition of bionic flaps on its trailing edge. This study's update tests three variations of the Reynolds number: Re = 106, Re = 5 × 105, and Re = 3 × 105. The airfoil test was carried out at AoA 0°–25°. The addition of bionic flaps causes a decrease in lift performance at low AoA, but at high AoA, it can increase lift performance on airfoils. In addition, adding a bionic flap on the airfoil can delay the occurrence of a stall. At AoA 10°–13°, the Cd of the three variations of the Reynolds number experiences an increase in performance. Then, from this computational test, the resulting Coefficient moment (Cm) is a pitch down because the torque is below zero.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信