{"title":"中低速磁浮列车复合轨道梁力学性能研究","authors":"Junhu Gong, Jiacheng Feng, Shiqiang Qin","doi":"10.1080/10168664.2023.2254325","DOIUrl":null,"url":null,"abstract":"AbstractTraditional medium-low speed Maglev track separated beam structures have drawbacks such as large structural height and neglect of F-type rail stiffness. This study proposes a new integrated track beam for medium-low speed maglev transportation. Finite element analysis is employed to compare the strength, stiffness, and natural frequencies of the integrated track beam with the existing separated track beam. The influence of beam height on the overall mechanical performance of the integrated track beam is analyzed. The ultimate bearing capacity of the steel-concrete composite joint in the integrated track beam is investigated through full-scale model testing. The results demonstrate that the proposed integrated track beam exhibits a 28% increase in flexural stiffness. The mid-span deflection is reduced by 19.9% under static and live loads. The first-order vertical natural frequency increases by 13.6%. The main factor governing the minimum beam height of the integrated track beam is the deflection limit under static and live loads. The beam height can be optimized from 2.1 m to 1.6 m. The model testing reveals that the F-type rail is controlled by torsional stiffness and can withstand 1.3 times the design load. The ultimate bearing capacity of the steel-concrete composite joint is 4.5 times the design load, providing sufficient load reserves.Keywords: Maglev transitintegrated track beammechanical propertiessteel concrete jointbearing capacitymodel test Data Availability StatementThe authors confirm that the data supporting the findings of this study are available within the article.Disclosure StatementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by Major Science and Technology project of China Railway Construction Co., Ltd. [2018-A01].","PeriodicalId":51281,"journal":{"name":"Structural Engineering International","volume":"48 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical Properties of Composite Track Beam for Medium and Low Speed Maglev Transit\",\"authors\":\"Junhu Gong, Jiacheng Feng, Shiqiang Qin\",\"doi\":\"10.1080/10168664.2023.2254325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractTraditional medium-low speed Maglev track separated beam structures have drawbacks such as large structural height and neglect of F-type rail stiffness. This study proposes a new integrated track beam for medium-low speed maglev transportation. Finite element analysis is employed to compare the strength, stiffness, and natural frequencies of the integrated track beam with the existing separated track beam. The influence of beam height on the overall mechanical performance of the integrated track beam is analyzed. The ultimate bearing capacity of the steel-concrete composite joint in the integrated track beam is investigated through full-scale model testing. The results demonstrate that the proposed integrated track beam exhibits a 28% increase in flexural stiffness. The mid-span deflection is reduced by 19.9% under static and live loads. The first-order vertical natural frequency increases by 13.6%. The main factor governing the minimum beam height of the integrated track beam is the deflection limit under static and live loads. The beam height can be optimized from 2.1 m to 1.6 m. The model testing reveals that the F-type rail is controlled by torsional stiffness and can withstand 1.3 times the design load. The ultimate bearing capacity of the steel-concrete composite joint is 4.5 times the design load, providing sufficient load reserves.Keywords: Maglev transitintegrated track beammechanical propertiessteel concrete jointbearing capacitymodel test Data Availability StatementThe authors confirm that the data supporting the findings of this study are available within the article.Disclosure StatementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by Major Science and Technology project of China Railway Construction Co., Ltd. [2018-A01].\",\"PeriodicalId\":51281,\"journal\":{\"name\":\"Structural Engineering International\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Engineering International\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10168664.2023.2254325\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Engineering International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10168664.2023.2254325","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Mechanical Properties of Composite Track Beam for Medium and Low Speed Maglev Transit
AbstractTraditional medium-low speed Maglev track separated beam structures have drawbacks such as large structural height and neglect of F-type rail stiffness. This study proposes a new integrated track beam for medium-low speed maglev transportation. Finite element analysis is employed to compare the strength, stiffness, and natural frequencies of the integrated track beam with the existing separated track beam. The influence of beam height on the overall mechanical performance of the integrated track beam is analyzed. The ultimate bearing capacity of the steel-concrete composite joint in the integrated track beam is investigated through full-scale model testing. The results demonstrate that the proposed integrated track beam exhibits a 28% increase in flexural stiffness. The mid-span deflection is reduced by 19.9% under static and live loads. The first-order vertical natural frequency increases by 13.6%. The main factor governing the minimum beam height of the integrated track beam is the deflection limit under static and live loads. The beam height can be optimized from 2.1 m to 1.6 m. The model testing reveals that the F-type rail is controlled by torsional stiffness and can withstand 1.3 times the design load. The ultimate bearing capacity of the steel-concrete composite joint is 4.5 times the design load, providing sufficient load reserves.Keywords: Maglev transitintegrated track beammechanical propertiessteel concrete jointbearing capacitymodel test Data Availability StatementThe authors confirm that the data supporting the findings of this study are available within the article.Disclosure StatementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by Major Science and Technology project of China Railway Construction Co., Ltd. [2018-A01].
期刊介绍:
The aim of the Association is to exchange knowledge and to advance the practice of structural engineering worldwide in the service of the profession and society.