四氧基除草剂的反应性:力和反应电子通量谱

IF 1.6 4区 化学 Q4 CHEMISTRY, PHYSICAL
Juan J. Villaverde, Pilar Sandín-España, José L. Alonso-Prados, Manuel Alcamí, Al Mokhtar Lamsabhi
{"title":"四氧基除草剂的反应性:力和反应电子通量谱","authors":"Juan J. Villaverde, Pilar Sandín-España, José L. Alonso-Prados, Manuel Alcamí, Al Mokhtar Lamsabhi","doi":"10.1007/s00214-023-03042-4","DOIUrl":null,"url":null,"abstract":"Abstract The reaction force profile and the electronic reaction flux concepts were explored for the herbicide alloxydim and some of its derivatives at B3LYP/6-311G(d,p) level of theory. The exploration was achieved by rotating the oxime bond which is the most reactive region of the molecule. The main objective is to understand how the rotation of this bond influences the properties of the molecule and induces an electronic reorganization. The results show that the rotation of the dihedral angle triggers alloxydim to go through three transition states. The first step of the transformation begins by the rupture of the hydrogen bond and is characterized by a pronounced structural reorganization. In the last step of the process the electronic reorganization is more important.","PeriodicalId":23045,"journal":{"name":"Theoretical Chemistry Accounts","volume":"54 1","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reactivity of alloxydim herbicide: force and reaction electronic flux profiles\",\"authors\":\"Juan J. Villaverde, Pilar Sandín-España, José L. Alonso-Prados, Manuel Alcamí, Al Mokhtar Lamsabhi\",\"doi\":\"10.1007/s00214-023-03042-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The reaction force profile and the electronic reaction flux concepts were explored for the herbicide alloxydim and some of its derivatives at B3LYP/6-311G(d,p) level of theory. The exploration was achieved by rotating the oxime bond which is the most reactive region of the molecule. The main objective is to understand how the rotation of this bond influences the properties of the molecule and induces an electronic reorganization. The results show that the rotation of the dihedral angle triggers alloxydim to go through three transition states. The first step of the transformation begins by the rupture of the hydrogen bond and is characterized by a pronounced structural reorganization. In the last step of the process the electronic reorganization is more important.\",\"PeriodicalId\":23045,\"journal\":{\"name\":\"Theoretical Chemistry Accounts\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Chemistry Accounts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00214-023-03042-4\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Chemistry Accounts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00214-023-03042-4","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要在B3LYP/6-311G(d,p)理论水平上探讨了除草剂氧基醚及其衍生物的反作用力分布和电子反应通量概念。这种探索是通过旋转分子中最活跃的肟键来实现的。主要目的是了解该键的旋转如何影响分子的性质并诱导电子重组。结果表明,二面角的旋转触发了四氧基的三个过渡态。转变的第一步开始于氢键的断裂,其特征是明显的结构重组。在这一过程的最后一步,电子重组更为重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Reactivity of alloxydim herbicide: force and reaction electronic flux profiles

Reactivity of alloxydim herbicide: force and reaction electronic flux profiles
Abstract The reaction force profile and the electronic reaction flux concepts were explored for the herbicide alloxydim and some of its derivatives at B3LYP/6-311G(d,p) level of theory. The exploration was achieved by rotating the oxime bond which is the most reactive region of the molecule. The main objective is to understand how the rotation of this bond influences the properties of the molecule and induces an electronic reorganization. The results show that the rotation of the dihedral angle triggers alloxydim to go through three transition states. The first step of the transformation begins by the rupture of the hydrogen bond and is characterized by a pronounced structural reorganization. In the last step of the process the electronic reorganization is more important.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical Chemistry Accounts
Theoretical Chemistry Accounts 化学-物理化学
CiteScore
3.40
自引率
0.00%
发文量
74
审稿时长
3.8 months
期刊介绍: TCA publishes papers in all fields of theoretical chemistry, computational chemistry, and modeling. Fundamental studies as well as applications are included in the scope. In many cases, theorists and computational chemists have special concerns which reach either across the vertical borders of the special disciplines in chemistry or else across the horizontal borders of structure, spectra, synthesis, and dynamics. TCA is especially interested in papers that impact upon multiple chemical disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信