Thi Hai Yen Pham, Thi Kim Ngan Nguyen, Thi Thu Hien Chu, Thi Thu Ha Vu, Quoc Hung Le
{"title":"用聚谷氨酸电化学修饰铅笔芯石墨作为水介质中恩诺沙星的传感器","authors":"Thi Hai Yen Pham, Thi Kim Ngan Nguyen, Thi Thu Hien Chu, Thi Thu Ha Vu, Quoc Hung Le","doi":"10.31276/vjste.65(3).44-49","DOIUrl":null,"url":null,"abstract":"This study investigates the modification of pencil lead graphite electrodes with polyglutamic acid using an effective and fast static method to develop a sensor for the detection of enrofloxacin (ENR). The successful fabrication of pGA on the electrode surface was confirmed by scanning electron microscopy, energy dispersive X-ray analysis, and Fourier-transform infrared spectroscopy. The conditions of electrochemical modification, including the applied potentials and number of cycles in the potentiostatic process, were systematically investigated to determine their effects on the ENR electrochemical response. The pH of the electrolyte media was also explored to elucidate the electrochemical reaction mechanism of ENR. The developed electrochemical sensor was evaluated using square wave stripping voltammetry for ENR detection. Under optimal conditions, the sensor demonstrated good reproducibility with a relative standard deviation of 4.3% (from five measurements) for ENR signal detection. A linear relationship between ENR concentration and its peak current was observed in the concentration range of 0.1 to 5 μM, with a high correlation coefficient of 0.9988. The limit of detection for ENR using the sensor was 0.12 μM. Our findings provide valuable insights into the design and optimisation of pencil lead graphite electrode-based sensors for ENR detection in aqueous media.","PeriodicalId":23548,"journal":{"name":"Vietnam Journal of Science, Technology and Engineering","volume":"241 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pencil lead graphite electrochemically modified with polyglutamic acid as a sensor for detection of enrofloxacin in aqueous media\",\"authors\":\"Thi Hai Yen Pham, Thi Kim Ngan Nguyen, Thi Thu Hien Chu, Thi Thu Ha Vu, Quoc Hung Le\",\"doi\":\"10.31276/vjste.65(3).44-49\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the modification of pencil lead graphite electrodes with polyglutamic acid using an effective and fast static method to develop a sensor for the detection of enrofloxacin (ENR). The successful fabrication of pGA on the electrode surface was confirmed by scanning electron microscopy, energy dispersive X-ray analysis, and Fourier-transform infrared spectroscopy. The conditions of electrochemical modification, including the applied potentials and number of cycles in the potentiostatic process, were systematically investigated to determine their effects on the ENR electrochemical response. The pH of the electrolyte media was also explored to elucidate the electrochemical reaction mechanism of ENR. The developed electrochemical sensor was evaluated using square wave stripping voltammetry for ENR detection. Under optimal conditions, the sensor demonstrated good reproducibility with a relative standard deviation of 4.3% (from five measurements) for ENR signal detection. A linear relationship between ENR concentration and its peak current was observed in the concentration range of 0.1 to 5 μM, with a high correlation coefficient of 0.9988. The limit of detection for ENR using the sensor was 0.12 μM. Our findings provide valuable insights into the design and optimisation of pencil lead graphite electrode-based sensors for ENR detection in aqueous media.\",\"PeriodicalId\":23548,\"journal\":{\"name\":\"Vietnam Journal of Science, Technology and Engineering\",\"volume\":\"241 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vietnam Journal of Science, Technology and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31276/vjste.65(3).44-49\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vietnam Journal of Science, Technology and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31276/vjste.65(3).44-49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pencil lead graphite electrochemically modified with polyglutamic acid as a sensor for detection of enrofloxacin in aqueous media
This study investigates the modification of pencil lead graphite electrodes with polyglutamic acid using an effective and fast static method to develop a sensor for the detection of enrofloxacin (ENR). The successful fabrication of pGA on the electrode surface was confirmed by scanning electron microscopy, energy dispersive X-ray analysis, and Fourier-transform infrared spectroscopy. The conditions of electrochemical modification, including the applied potentials and number of cycles in the potentiostatic process, were systematically investigated to determine their effects on the ENR electrochemical response. The pH of the electrolyte media was also explored to elucidate the electrochemical reaction mechanism of ENR. The developed electrochemical sensor was evaluated using square wave stripping voltammetry for ENR detection. Under optimal conditions, the sensor demonstrated good reproducibility with a relative standard deviation of 4.3% (from five measurements) for ENR signal detection. A linear relationship between ENR concentration and its peak current was observed in the concentration range of 0.1 to 5 μM, with a high correlation coefficient of 0.9988. The limit of detection for ENR using the sensor was 0.12 μM. Our findings provide valuable insights into the design and optimisation of pencil lead graphite electrode-based sensors for ENR detection in aqueous media.