Noelia Bazarra, José R. Fernández, Ramón Quintanilla
{"title":"具有两个松弛参数的MGT热弹性问题","authors":"Noelia Bazarra, José R. Fernández, Ramón Quintanilla","doi":"10.1007/s00033-023-02080-z","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we consider, from both analytical and numerical viewpoints, a thermoelastic problem. The so-called MGT model, with two different relaxation parameters, is used for both the displacements and the thermal displacement, leading to a linear coupled system made by two third-order in time partial differential equations. Then, using the theory of linear semi-groups the existence and uniqueness to this problem is proved. If we restrict ourselves to the one-dimensional case, the exponential decay of the energy is obtained assuming some conditions on the constitutive parameters. Then, using the classical finite element method and the implicit Euler scheme, we introduce a fully discrete approximation of a variational formulation of the thermomechanical problem. A main a priori error estimates result is shown, from which we conclude the linear convergence under suitable additional regularity conditions. Finally, we present some one-dimensional numerical simulations to demonstrate the convergence of the fully discrete approximation, the behavior of the discrete energy decay and the dependence on a coupling parameter.","PeriodicalId":54401,"journal":{"name":"Zeitschrift fur Angewandte Mathematik und Physik","volume":"20 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A MGT thermoelastic problem with two relaxation parameters\",\"authors\":\"Noelia Bazarra, José R. Fernández, Ramón Quintanilla\",\"doi\":\"10.1007/s00033-023-02080-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we consider, from both analytical and numerical viewpoints, a thermoelastic problem. The so-called MGT model, with two different relaxation parameters, is used for both the displacements and the thermal displacement, leading to a linear coupled system made by two third-order in time partial differential equations. Then, using the theory of linear semi-groups the existence and uniqueness to this problem is proved. If we restrict ourselves to the one-dimensional case, the exponential decay of the energy is obtained assuming some conditions on the constitutive parameters. Then, using the classical finite element method and the implicit Euler scheme, we introduce a fully discrete approximation of a variational formulation of the thermomechanical problem. A main a priori error estimates result is shown, from which we conclude the linear convergence under suitable additional regularity conditions. Finally, we present some one-dimensional numerical simulations to demonstrate the convergence of the fully discrete approximation, the behavior of the discrete energy decay and the dependence on a coupling parameter.\",\"PeriodicalId\":54401,\"journal\":{\"name\":\"Zeitschrift fur Angewandte Mathematik und Physik\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift fur Angewandte Mathematik und Physik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00033-023-02080-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift fur Angewandte Mathematik und Physik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00033-023-02080-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A MGT thermoelastic problem with two relaxation parameters
Abstract In this paper, we consider, from both analytical and numerical viewpoints, a thermoelastic problem. The so-called MGT model, with two different relaxation parameters, is used for both the displacements and the thermal displacement, leading to a linear coupled system made by two third-order in time partial differential equations. Then, using the theory of linear semi-groups the existence and uniqueness to this problem is proved. If we restrict ourselves to the one-dimensional case, the exponential decay of the energy is obtained assuming some conditions on the constitutive parameters. Then, using the classical finite element method and the implicit Euler scheme, we introduce a fully discrete approximation of a variational formulation of the thermomechanical problem. A main a priori error estimates result is shown, from which we conclude the linear convergence under suitable additional regularity conditions. Finally, we present some one-dimensional numerical simulations to demonstrate the convergence of the fully discrete approximation, the behavior of the discrete energy decay and the dependence on a coupling parameter.
期刊介绍:
The Journal of Applied Mathematics and Physics (ZAMP) publishes papers of high scientific quality in Fluid Mechanics, Mechanics of Solids and Differential Equations/Applied Mathematics. A paper will be considered for publication if at least one of the following conditions is fulfilled:
The paper includes results or discussions which can be considered original and highly interesting.
The paper presents a new method.
The author reviews a problem or a class of problems with such profound insight that further research is encouraged.
The readers of ZAMP will find not only articles in their own special field but also original work in neighbouring domains. This will lead to an exchange of ideas; concepts and methods which have proven to be successful in one field may well be useful to other areas. ZAMP attempts to publish articles reasonably quickly. Longer papers are published in the section "Original Papers", shorter ones may appear under "Brief Reports" where publication is particularly rapid. The journal includes a "Book Review" section and provides information on activities (such as upcoming symposia, meetings or special courses) which are of interest to its readers.