Xin Cao, Xiangning Chu, Jacob Bortnik, James M. Weygand, Jinxing Li, Homayon Aryan, Donglai Ma
{"title":"利用基于神经网络的模型研究电离层电流对外部驱动的响应","authors":"Xin Cao, Xiangning Chu, Jacob Bortnik, James M. Weygand, Jinxing Li, Homayon Aryan, Donglai Ma","doi":"10.1029/2023sw003506","DOIUrl":null,"url":null,"abstract":"Abstract A predictive model for the variation of ionospheric currents is of great scientific and practical importance to our modern industrial society. To study the response of ionospheric currents to external drivers including geomagnetic indices and solar radiation, we developed a feedforward neural network model trained on the Equivalent Ionospheric Current (EIC) data from 1st January 2007 to 31st December 2019. Due to the highly imbalanced nature of the ionospheric currents data, which means that the data of extreme events are much less than those of quiet times, we utilized different loss functions to improve the model performance. Our model demonstrates the potential to predict the active events of ionospheric currents reasonably well (e.g., EICs during substorms) within a timescale of a few minutes. Although the data used for training are measurements over the North American and Greenland sectors, our model is not only able to predict EICs within this region, but is also able to provide a promising out‐of‐sample prediction on a global scale.","PeriodicalId":49487,"journal":{"name":"Space Weather-The International Journal of Research and Applications","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Response of Ionospheric Currents to External Drivers Investigated Using a Neural Network‐Based Model\",\"authors\":\"Xin Cao, Xiangning Chu, Jacob Bortnik, James M. Weygand, Jinxing Li, Homayon Aryan, Donglai Ma\",\"doi\":\"10.1029/2023sw003506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A predictive model for the variation of ionospheric currents is of great scientific and practical importance to our modern industrial society. To study the response of ionospheric currents to external drivers including geomagnetic indices and solar radiation, we developed a feedforward neural network model trained on the Equivalent Ionospheric Current (EIC) data from 1st January 2007 to 31st December 2019. Due to the highly imbalanced nature of the ionospheric currents data, which means that the data of extreme events are much less than those of quiet times, we utilized different loss functions to improve the model performance. Our model demonstrates the potential to predict the active events of ionospheric currents reasonably well (e.g., EICs during substorms) within a timescale of a few minutes. Although the data used for training are measurements over the North American and Greenland sectors, our model is not only able to predict EICs within this region, but is also able to provide a promising out‐of‐sample prediction on a global scale.\",\"PeriodicalId\":49487,\"journal\":{\"name\":\"Space Weather-The International Journal of Research and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Space Weather-The International Journal of Research and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1029/2023sw003506\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Space Weather-The International Journal of Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1029/2023sw003506","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
The Response of Ionospheric Currents to External Drivers Investigated Using a Neural Network‐Based Model
Abstract A predictive model for the variation of ionospheric currents is of great scientific and practical importance to our modern industrial society. To study the response of ionospheric currents to external drivers including geomagnetic indices and solar radiation, we developed a feedforward neural network model trained on the Equivalent Ionospheric Current (EIC) data from 1st January 2007 to 31st December 2019. Due to the highly imbalanced nature of the ionospheric currents data, which means that the data of extreme events are much less than those of quiet times, we utilized different loss functions to improve the model performance. Our model demonstrates the potential to predict the active events of ionospheric currents reasonably well (e.g., EICs during substorms) within a timescale of a few minutes. Although the data used for training are measurements over the North American and Greenland sectors, our model is not only able to predict EICs within this region, but is also able to provide a promising out‐of‐sample prediction on a global scale.
期刊介绍:
Space Weather: The International Journal of Research and Applications (SWE) is devoted to understanding and forecasting space weather. The scope of understanding and forecasting includes: origins, propagation and interactions of solar-produced processes within geospace; interactions in Earth’s space-atmosphere interface region produced by disturbances from above and below; influences of cosmic rays on humans, hardware, and signals; and comparisons of these types of interactions and influences with the atmospheres of neighboring planets and Earth’s moon. Manuscripts should emphasize impacts on technical systems including telecommunications, transportation, electric power, satellite navigation, avionics/spacecraft design and operations, human spaceflight, and other systems. Manuscripts that describe models or space environment climatology should clearly state how the results can be applied.