{"title":"生物胶结松散砂的液化触发及后触发行为","authors":"Minyong Lee, Michael Gregory Gomez","doi":"10.1139/cgj-2023-0132","DOIUrl":null,"url":null,"abstract":"Biocementation is a biomediated ground improvement technique that can improve the engineering behavior of granular soils. The process has received significant attention as an earthquake-induced liquefaction mitigation technique; however, critical gaps have remained in our understanding of how liquefaction behaviors may shift with differences in loading magnitudes and cementation levels. In this study, direct simple shear tests were performed to examine the undrained shearing behaviors of biocemented loose Ottawa F-65 sand prepared to varying cementation levels corresponding to Vs increases up to 523 m/s. Significant increases in liquefaction triggering resistances were observed with added cementation across a broad range of loading magnitudes (CSR = 0.1 to 1.75) and exceeded improvements obtainable through densification alone. Following triggering, modest improvements in post-triggering strain accumulation and reconsolidation behaviors were observed that could be primarily attributed to the densification of specimens from added mineral solids at low cementation levels (ΔVs < 150 m/s). At higher cementation magnitudes, however, post-triggering behavioral enhancements exceeded those which would be expected from densification alone. Outcomes from this study improve our understanding of the liquefaction behaviors of biocemented soils, the metrics by which these behaviors can be effectively characterized, and the mechanisms responsible for behavioral enhancements, ultimately furthering our understanding of how the technology may be employed for liquefaction mitigation.","PeriodicalId":9382,"journal":{"name":"Canadian Geotechnical Journal","volume":"239 1","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Liquefaction Triggering and Post-triggering Behavior of Biocemented Loose Sand\",\"authors\":\"Minyong Lee, Michael Gregory Gomez\",\"doi\":\"10.1139/cgj-2023-0132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biocementation is a biomediated ground improvement technique that can improve the engineering behavior of granular soils. The process has received significant attention as an earthquake-induced liquefaction mitigation technique; however, critical gaps have remained in our understanding of how liquefaction behaviors may shift with differences in loading magnitudes and cementation levels. In this study, direct simple shear tests were performed to examine the undrained shearing behaviors of biocemented loose Ottawa F-65 sand prepared to varying cementation levels corresponding to Vs increases up to 523 m/s. Significant increases in liquefaction triggering resistances were observed with added cementation across a broad range of loading magnitudes (CSR = 0.1 to 1.75) and exceeded improvements obtainable through densification alone. Following triggering, modest improvements in post-triggering strain accumulation and reconsolidation behaviors were observed that could be primarily attributed to the densification of specimens from added mineral solids at low cementation levels (ΔVs < 150 m/s). At higher cementation magnitudes, however, post-triggering behavioral enhancements exceeded those which would be expected from densification alone. Outcomes from this study improve our understanding of the liquefaction behaviors of biocemented soils, the metrics by which these behaviors can be effectively characterized, and the mechanisms responsible for behavioral enhancements, ultimately furthering our understanding of how the technology may be employed for liquefaction mitigation.\",\"PeriodicalId\":9382,\"journal\":{\"name\":\"Canadian Geotechnical Journal\",\"volume\":\"239 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Geotechnical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1139/cgj-2023-0132\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Geotechnical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/cgj-2023-0132","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Liquefaction Triggering and Post-triggering Behavior of Biocemented Loose Sand
Biocementation is a biomediated ground improvement technique that can improve the engineering behavior of granular soils. The process has received significant attention as an earthquake-induced liquefaction mitigation technique; however, critical gaps have remained in our understanding of how liquefaction behaviors may shift with differences in loading magnitudes and cementation levels. In this study, direct simple shear tests were performed to examine the undrained shearing behaviors of biocemented loose Ottawa F-65 sand prepared to varying cementation levels corresponding to Vs increases up to 523 m/s. Significant increases in liquefaction triggering resistances were observed with added cementation across a broad range of loading magnitudes (CSR = 0.1 to 1.75) and exceeded improvements obtainable through densification alone. Following triggering, modest improvements in post-triggering strain accumulation and reconsolidation behaviors were observed that could be primarily attributed to the densification of specimens from added mineral solids at low cementation levels (ΔVs < 150 m/s). At higher cementation magnitudes, however, post-triggering behavioral enhancements exceeded those which would be expected from densification alone. Outcomes from this study improve our understanding of the liquefaction behaviors of biocemented soils, the metrics by which these behaviors can be effectively characterized, and the mechanisms responsible for behavioral enhancements, ultimately furthering our understanding of how the technology may be employed for liquefaction mitigation.
期刊介绍:
The Canadian Geotechnical Journal features articles, notes, reviews, and discussions related to new developments in geotechnical and geoenvironmental engineering, and applied sciences. The topics of papers written by researchers and engineers/scientists active in industry include soil and rock mechanics, material properties and fundamental behaviour, site characterization, foundations, excavations, tunnels, dams and embankments, slopes, landslides, geological and rock engineering, ground improvement, hydrogeology and contaminant hydrogeology, geochemistry, waste management, geosynthetics, offshore engineering, ice, frozen ground and northern engineering, risk and reliability applications, and physical and numerical modelling.
Contributions that have practical relevance are preferred, including case records. Purely theoretical contributions are not generally published unless they are on a topic of special interest (like unsaturated soil mechanics or cold regions geotechnics) or they have direct practical value.