Hasanpasha N. Sholapur, Basanagouda M. Patil, Fatima Sanjeri Dasankoppa
{"title":"辣木茎皮原花青素二聚体的研究减轻大鼠胰岛素抵抗","authors":"Hasanpasha N. Sholapur, Basanagouda M. Patil, Fatima Sanjeri Dasankoppa","doi":"10.1080/22311866.2023.2277897","DOIUrl":null,"url":null,"abstract":"AbstractAlcoholic extract and its ethyl acetate fraction of Moringa oleifera (Lam.) (MO), (Moringaceae) bark are experimentally claimed to possess insulin-sensitizing potentials. The present study aimed to isolate and characterize the phytochemical(s) responsible for insulin sensitization in dexamethasone-induced acute and chronic rat models for insulin resistance (IR). The reported ethyl acetate fraction from the alcoholic extract of the bark of MO was prepared and subjected to bioactivity-guided sub-fractionation and isolation of phytochemicals. A component responsible for improving insulin sensitivity in rat models for IR was isolated and reported for the first time from the bark of MO and its structure was characterized as a procyanidin dimer type of polyphenol by spectroscopic techniques.Keywords: DexamethasoneInsulin resistanceMoringa oleiferaOral glucose tolerance testProcyanidin","PeriodicalId":15364,"journal":{"name":"Journal of Biologically Active Products from Nature","volume":"56 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Procyanidin Dimer from the Stem Bark of <i>Moringa oleifera</i> (Lam.) Attenuates Insulin Resistance in Rats\",\"authors\":\"Hasanpasha N. Sholapur, Basanagouda M. Patil, Fatima Sanjeri Dasankoppa\",\"doi\":\"10.1080/22311866.2023.2277897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractAlcoholic extract and its ethyl acetate fraction of Moringa oleifera (Lam.) (MO), (Moringaceae) bark are experimentally claimed to possess insulin-sensitizing potentials. The present study aimed to isolate and characterize the phytochemical(s) responsible for insulin sensitization in dexamethasone-induced acute and chronic rat models for insulin resistance (IR). The reported ethyl acetate fraction from the alcoholic extract of the bark of MO was prepared and subjected to bioactivity-guided sub-fractionation and isolation of phytochemicals. A component responsible for improving insulin sensitivity in rat models for IR was isolated and reported for the first time from the bark of MO and its structure was characterized as a procyanidin dimer type of polyphenol by spectroscopic techniques.Keywords: DexamethasoneInsulin resistanceMoringa oleiferaOral glucose tolerance testProcyanidin\",\"PeriodicalId\":15364,\"journal\":{\"name\":\"Journal of Biologically Active Products from Nature\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biologically Active Products from Nature\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/22311866.2023.2277897\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biologically Active Products from Nature","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/22311866.2023.2277897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Procyanidin Dimer from the Stem Bark of Moringa oleifera (Lam.) Attenuates Insulin Resistance in Rats
AbstractAlcoholic extract and its ethyl acetate fraction of Moringa oleifera (Lam.) (MO), (Moringaceae) bark are experimentally claimed to possess insulin-sensitizing potentials. The present study aimed to isolate and characterize the phytochemical(s) responsible for insulin sensitization in dexamethasone-induced acute and chronic rat models for insulin resistance (IR). The reported ethyl acetate fraction from the alcoholic extract of the bark of MO was prepared and subjected to bioactivity-guided sub-fractionation and isolation of phytochemicals. A component responsible for improving insulin sensitivity in rat models for IR was isolated and reported for the first time from the bark of MO and its structure was characterized as a procyanidin dimer type of polyphenol by spectroscopic techniques.Keywords: DexamethasoneInsulin resistanceMoringa oleiferaOral glucose tolerance testProcyanidin