Wu Xiong, Xue Bai, Xi Zhang, Huajuan Lei, Hui Xiao, Luyao Zhang, Yuting Xiao, Qianpei Yang, Xiaoling Zou
{"title":"黄芪甲苷诱导的内皮祖细胞衍生外泌体通过PI3K/AKT/mTOR通路加速大鼠I型糖尿病伤口愈合","authors":"Wu Xiong, Xue Bai, Xi Zhang, Huajuan Lei, Hui Xiao, Luyao Zhang, Yuting Xiao, Qianpei Yang, Xiaoling Zou","doi":"10.31083/j.fbl2811282","DOIUrl":null,"url":null,"abstract":"Objective: We explore the effects of endothelial progenitor cell (EPC)-derived exosomes (EPCexos) and of astragaloside IV (ASIV)-stimulated EPCexos (ASIV-EPCexos) on type I diabetic-wound healing, and determine the basic molecular mechanisms of action. Methods: EPCs were exposed to different concentrations of ASIV to generate ASIV-EPCexos. A chronic-wound healing model involving streptozotocin-stimulated diabetic rats was established. These rats were treated with EPCexos, ASIV-EPCexos, rapamycin, and wortmannin. Wound healing was evaluated by direct photographic observation, hematoxylin and eosin staining, and Masson’s trichrome staining. Results: ASIV treatment increased the abilities of EPCs (e.g., proliferation), as well as exosome secretion. EPCexo showed a “cup holder” like structure. Treatment with ASIV-EPCexos increased the wound-healing rate, collagen-deposition area, bromodeoxyuridine uptake, VEGF expression, and the number of CD31- and αSMA- positive cells, whereas decreased epidermal thickness and CD45 expression. The expression of the PI3K/AKT/mTOR pathway increased, whereas the expression of inflammatory factor decreased. However, rapamycin and wortmannin reversed these changes. Conclusions: ASIV-EPCexos may accelerate type I diabetic-wound healing via the PI3K/AKT/mTOR pathway. This study may lay the foundation for new clinical treatment options for patients with type I diabetic wounds.","PeriodicalId":12366,"journal":{"name":"Frontiers in bioscience","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Endothelial Progenitor-Cell-Derived Exosomes Induced by Astragaloside IV Accelerate Type I Diabetic-wound Healing via the PI3K/AKT/mTOR Pathway in Rats\",\"authors\":\"Wu Xiong, Xue Bai, Xi Zhang, Huajuan Lei, Hui Xiao, Luyao Zhang, Yuting Xiao, Qianpei Yang, Xiaoling Zou\",\"doi\":\"10.31083/j.fbl2811282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective: We explore the effects of endothelial progenitor cell (EPC)-derived exosomes (EPCexos) and of astragaloside IV (ASIV)-stimulated EPCexos (ASIV-EPCexos) on type I diabetic-wound healing, and determine the basic molecular mechanisms of action. Methods: EPCs were exposed to different concentrations of ASIV to generate ASIV-EPCexos. A chronic-wound healing model involving streptozotocin-stimulated diabetic rats was established. These rats were treated with EPCexos, ASIV-EPCexos, rapamycin, and wortmannin. Wound healing was evaluated by direct photographic observation, hematoxylin and eosin staining, and Masson’s trichrome staining. Results: ASIV treatment increased the abilities of EPCs (e.g., proliferation), as well as exosome secretion. EPCexo showed a “cup holder” like structure. Treatment with ASIV-EPCexos increased the wound-healing rate, collagen-deposition area, bromodeoxyuridine uptake, VEGF expression, and the number of CD31- and αSMA- positive cells, whereas decreased epidermal thickness and CD45 expression. The expression of the PI3K/AKT/mTOR pathway increased, whereas the expression of inflammatory factor decreased. However, rapamycin and wortmannin reversed these changes. Conclusions: ASIV-EPCexos may accelerate type I diabetic-wound healing via the PI3K/AKT/mTOR pathway. This study may lay the foundation for new clinical treatment options for patients with type I diabetic wounds.\",\"PeriodicalId\":12366,\"journal\":{\"name\":\"Frontiers in bioscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in bioscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31083/j.fbl2811282\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in bioscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31083/j.fbl2811282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Endothelial Progenitor-Cell-Derived Exosomes Induced by Astragaloside IV Accelerate Type I Diabetic-wound Healing via the PI3K/AKT/mTOR Pathway in Rats
Objective: We explore the effects of endothelial progenitor cell (EPC)-derived exosomes (EPCexos) and of astragaloside IV (ASIV)-stimulated EPCexos (ASIV-EPCexos) on type I diabetic-wound healing, and determine the basic molecular mechanisms of action. Methods: EPCs were exposed to different concentrations of ASIV to generate ASIV-EPCexos. A chronic-wound healing model involving streptozotocin-stimulated diabetic rats was established. These rats were treated with EPCexos, ASIV-EPCexos, rapamycin, and wortmannin. Wound healing was evaluated by direct photographic observation, hematoxylin and eosin staining, and Masson’s trichrome staining. Results: ASIV treatment increased the abilities of EPCs (e.g., proliferation), as well as exosome secretion. EPCexo showed a “cup holder” like structure. Treatment with ASIV-EPCexos increased the wound-healing rate, collagen-deposition area, bromodeoxyuridine uptake, VEGF expression, and the number of CD31- and αSMA- positive cells, whereas decreased epidermal thickness and CD45 expression. The expression of the PI3K/AKT/mTOR pathway increased, whereas the expression of inflammatory factor decreased. However, rapamycin and wortmannin reversed these changes. Conclusions: ASIV-EPCexos may accelerate type I diabetic-wound healing via the PI3K/AKT/mTOR pathway. This study may lay the foundation for new clinical treatment options for patients with type I diabetic wounds.