{"title":"具有r对称的超对称模型中的中微子质量","authors":"Marcos Cardoso Rodriguez, Ion Vasile Vancea","doi":"10.3390/particles6040062","DOIUrl":null,"url":null,"abstract":"In this article, we give a brief review of the origin of the neutrino mass in some interesting non-linear supersymmetric models with R-symmetry. These models are able to address and solve the most important problems of particle physics and provide mechanisms for neutrino mass generation and their mixing parameters in agreement with the current experimental data. Their prediction could be experimentally tested in the near future by collider experiments.","PeriodicalId":75932,"journal":{"name":"Inhaled particles","volume":"360 24","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neutrino Masses in Supersymmetric Models with R-Symmetry\",\"authors\":\"Marcos Cardoso Rodriguez, Ion Vasile Vancea\",\"doi\":\"10.3390/particles6040062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we give a brief review of the origin of the neutrino mass in some interesting non-linear supersymmetric models with R-symmetry. These models are able to address and solve the most important problems of particle physics and provide mechanisms for neutrino mass generation and their mixing parameters in agreement with the current experimental data. Their prediction could be experimentally tested in the near future by collider experiments.\",\"PeriodicalId\":75932,\"journal\":{\"name\":\"Inhaled particles\",\"volume\":\"360 24\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inhaled particles\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/particles6040062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inhaled particles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/particles6040062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Neutrino Masses in Supersymmetric Models with R-Symmetry
In this article, we give a brief review of the origin of the neutrino mass in some interesting non-linear supersymmetric models with R-symmetry. These models are able to address and solve the most important problems of particle physics and provide mechanisms for neutrino mass generation and their mixing parameters in agreement with the current experimental data. Their prediction could be experimentally tested in the near future by collider experiments.