Raúl Castillo-Villagra, Gabriel Icarte, Klaus-Dieter Thoben
{"title":"矿产供应链上游环节制造过程建模","authors":"Raúl Castillo-Villagra, Gabriel Icarte, Klaus-Dieter Thoben","doi":"10.3390/resources12110132","DOIUrl":null,"url":null,"abstract":"The upstream segment of the minerals supply chain (MiSC) is the backbone for achieving the transition to clean energy by securing the supply of minerals. Recently, the MiSC has been disrupted, affecting mineral supply and generating uncertainty among clean energy producers. Supply chain (SC) mapping addresses this uncertainty, providing a holistic end-to-end view. However, MiSC mapping studies mainly focus on the downstream segment, leaving aside the upstream segment. In this context, the fundamental gap is the lack of standardized modelling frameworks that can accurately represent the upstream segment dynamics and, at the same time, seamlessly integrate with the downstream segment. This paper bridges this gap, designing a model for the MiSC upstream segment (MiSCOR). Framed within design science research methodology, MiSCOR is built by adapting two reference models, the Exploration and Mining Business Reference Model (EM) and the Supply Chain Operations Reference Model (SCOR), focusing on the commodity-making process. The MiSCOR demonstrates its applicability and robustness in real operational scenarios of one of the largest copper producers. MiSCOR provides a management tool for practitioners and decision-makers in the MISC’s upstream segment, offering blueprints to throw functional silos, foster collaboration, and a standardized framework that integrates seamlessly with the downstream segment.","PeriodicalId":37723,"journal":{"name":"Resources","volume":"7 19","pages":"0"},"PeriodicalIF":3.6000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling the Make Process of the Mineral Supply Chain Upstream Segment\",\"authors\":\"Raúl Castillo-Villagra, Gabriel Icarte, Klaus-Dieter Thoben\",\"doi\":\"10.3390/resources12110132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The upstream segment of the minerals supply chain (MiSC) is the backbone for achieving the transition to clean energy by securing the supply of minerals. Recently, the MiSC has been disrupted, affecting mineral supply and generating uncertainty among clean energy producers. Supply chain (SC) mapping addresses this uncertainty, providing a holistic end-to-end view. However, MiSC mapping studies mainly focus on the downstream segment, leaving aside the upstream segment. In this context, the fundamental gap is the lack of standardized modelling frameworks that can accurately represent the upstream segment dynamics and, at the same time, seamlessly integrate with the downstream segment. This paper bridges this gap, designing a model for the MiSC upstream segment (MiSCOR). Framed within design science research methodology, MiSCOR is built by adapting two reference models, the Exploration and Mining Business Reference Model (EM) and the Supply Chain Operations Reference Model (SCOR), focusing on the commodity-making process. The MiSCOR demonstrates its applicability and robustness in real operational scenarios of one of the largest copper producers. MiSCOR provides a management tool for practitioners and decision-makers in the MISC’s upstream segment, offering blueprints to throw functional silos, foster collaboration, and a standardized framework that integrates seamlessly with the downstream segment.\",\"PeriodicalId\":37723,\"journal\":{\"name\":\"Resources\",\"volume\":\"7 19\",\"pages\":\"0\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Resources\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/resources12110132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/resources12110132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Modelling the Make Process of the Mineral Supply Chain Upstream Segment
The upstream segment of the minerals supply chain (MiSC) is the backbone for achieving the transition to clean energy by securing the supply of minerals. Recently, the MiSC has been disrupted, affecting mineral supply and generating uncertainty among clean energy producers. Supply chain (SC) mapping addresses this uncertainty, providing a holistic end-to-end view. However, MiSC mapping studies mainly focus on the downstream segment, leaving aside the upstream segment. In this context, the fundamental gap is the lack of standardized modelling frameworks that can accurately represent the upstream segment dynamics and, at the same time, seamlessly integrate with the downstream segment. This paper bridges this gap, designing a model for the MiSC upstream segment (MiSCOR). Framed within design science research methodology, MiSCOR is built by adapting two reference models, the Exploration and Mining Business Reference Model (EM) and the Supply Chain Operations Reference Model (SCOR), focusing on the commodity-making process. The MiSCOR demonstrates its applicability and robustness in real operational scenarios of one of the largest copper producers. MiSCOR provides a management tool for practitioners and decision-makers in the MISC’s upstream segment, offering blueprints to throw functional silos, foster collaboration, and a standardized framework that integrates seamlessly with the downstream segment.
ResourcesEnvironmental Science-Nature and Landscape Conservation
CiteScore
7.20
自引率
6.10%
发文量
0
审稿时长
11 weeks
期刊介绍:
Resources (ISSN 2079-9276) is an international, scholarly open access journal on the topic of natural resources. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and methodical details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal: manuscripts regarding research proposals and research ideas will be particularly welcomed, electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Subject Areas: natural resources, water resources, mineral resources, energy resources, land resources, plant and animal resources, genetic resources, ecology resources, resource management and policy, resources conservation and recycling.