分层随机测度的统一方法

Marta Catalano, Claudio Del Sole, Antonio Lijoi, Igor Prünster
{"title":"分层随机测度的统一方法","authors":"Marta Catalano, Claudio Del Sole, Antonio Lijoi, Igor Prünster","doi":"10.1007/s13171-023-00330-w","DOIUrl":null,"url":null,"abstract":"Abstract Hierarchical models enjoy great popularity due to their ability to handle heterogeneous groups of observations by leveraging on their underlying common structure. In a Bayesian nonparametric framework, the hierarchy is introduced at the level of group-specific random measures, and then translated to the observations’ level via suitable transformations. In this work, we propose a new strategy to derive closed-form expressions for the marginal and posterior distributions of each group. Indeed, by directly inserting a suitable set of latent variables into the generative model for the data, we unravel a common core shared by the different hierarchical constructions proposed in the Bayesian nonparametric literature. Specifically, we identify a key identity that underlies these models and highlight its role in the derivation of quantities of interest.","PeriodicalId":21657,"journal":{"name":"Sankhya A","volume":"92 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Unified Approach to Hierarchical Random Measures\",\"authors\":\"Marta Catalano, Claudio Del Sole, Antonio Lijoi, Igor Prünster\",\"doi\":\"10.1007/s13171-023-00330-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Hierarchical models enjoy great popularity due to their ability to handle heterogeneous groups of observations by leveraging on their underlying common structure. In a Bayesian nonparametric framework, the hierarchy is introduced at the level of group-specific random measures, and then translated to the observations’ level via suitable transformations. In this work, we propose a new strategy to derive closed-form expressions for the marginal and posterior distributions of each group. Indeed, by directly inserting a suitable set of latent variables into the generative model for the data, we unravel a common core shared by the different hierarchical constructions proposed in the Bayesian nonparametric literature. Specifically, we identify a key identity that underlies these models and highlight its role in the derivation of quantities of interest.\",\"PeriodicalId\":21657,\"journal\":{\"name\":\"Sankhya A\",\"volume\":\"92 8\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sankhya A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13171-023-00330-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sankhya A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13171-023-00330-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

层次模型非常受欢迎,因为它们能够通过利用其底层的共同结构来处理异构的观察组。在贝叶斯非参数框架中,层次结构在特定于组的随机度量水平上引入,然后通过适当的转换转换到观测水平。在这项工作中,我们提出了一种新的策略来推导每个组的边际和后验分布的封闭形式表达式。事实上,通过直接将一组合适的潜在变量插入到数据的生成模型中,我们揭示了贝叶斯非参数文献中提出的不同层次结构共享的共同核心。具体来说,我们确定了这些模型的关键身份,并强调了其在兴趣量的推导中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Unified Approach to Hierarchical Random Measures
Abstract Hierarchical models enjoy great popularity due to their ability to handle heterogeneous groups of observations by leveraging on their underlying common structure. In a Bayesian nonparametric framework, the hierarchy is introduced at the level of group-specific random measures, and then translated to the observations’ level via suitable transformations. In this work, we propose a new strategy to derive closed-form expressions for the marginal and posterior distributions of each group. Indeed, by directly inserting a suitable set of latent variables into the generative model for the data, we unravel a common core shared by the different hierarchical constructions proposed in the Bayesian nonparametric literature. Specifically, we identify a key identity that underlies these models and highlight its role in the derivation of quantities of interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信