逻辑 QHC 和 QH4 的 Cardinality Reduction Theorem for Logics QHC 和 QH4

IF 0.4 3区 数学 Q4 LOGIC
A. A. Onoprienko
{"title":"逻辑 QHC 和 QH4 的 Cardinality Reduction Theorem for Logics QHC 和 QH4","authors":"A. A. Onoprienko","doi":"10.1007/s10469-023-09715-0","DOIUrl":null,"url":null,"abstract":"<p>The joint logic of problems and propositions QHC introduced by S. A. Melikhov, as well as intuitionistic modal logic QH4, is studied. An immersion of these logics into classical first-order predicate logic is considered. An analog of the Löwenheim–Skolem theorem on the existence of countable elementary submodels for QHC and QH4 is established.</p>","PeriodicalId":7422,"journal":{"name":"Algebra and Logic","volume":"61 6","pages":"491 - 505"},"PeriodicalIF":0.4000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cardinality Reduction Theorem for Logics QHC and QH4\",\"authors\":\"A. A. Onoprienko\",\"doi\":\"10.1007/s10469-023-09715-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The joint logic of problems and propositions QHC introduced by S. A. Melikhov, as well as intuitionistic modal logic QH4, is studied. An immersion of these logics into classical first-order predicate logic is considered. An analog of the Löwenheim–Skolem theorem on the existence of countable elementary submodels for QHC and QH4 is established.</p>\",\"PeriodicalId\":7422,\"journal\":{\"name\":\"Algebra and Logic\",\"volume\":\"61 6\",\"pages\":\"491 - 505\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra and Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10469-023-09715-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra and Logic","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10469-023-09715-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

研究了梅利霍夫(S. A. Melikhov)提出的问题与命题联合逻辑 QHC 以及直觉模态逻辑 QH4。研究考虑了这些逻辑对经典一阶谓词逻辑的沉浸。建立了关于 QHC 和 QH4 存在可数基本子模型的 Löwenheim-Skolem 类似定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cardinality Reduction Theorem for Logics QHC and QH4

The joint logic of problems and propositions QHC introduced by S. A. Melikhov, as well as intuitionistic modal logic QH4, is studied. An immersion of these logics into classical first-order predicate logic is considered. An analog of the Löwenheim–Skolem theorem on the existence of countable elementary submodels for QHC and QH4 is established.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebra and Logic
Algebra and Logic 数学-数学
CiteScore
1.10
自引率
20.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: This bimonthly journal publishes results of the latest research in the areas of modern general algebra and of logic considered primarily from an algebraic viewpoint. The algebraic papers, constituting the major part of the contents, are concerned with studies in such fields as ordered, almost torsion-free, nilpotent, and metabelian groups; isomorphism rings; Lie algebras; Frattini subgroups; and clusters of algebras. In the area of logic, the periodical covers such topics as hierarchical sets, logical automata, and recursive functions. Algebra and Logic is a translation of ALGEBRA I LOGIKA, a publication of the Siberian Fund for Algebra and Logic and the Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences. All articles are peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信