探讨氧化石墨烯对废砂浆力学性能和耐久性的影响:微孔和纳米孔结构效应

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Cristina Chacón Bonet, Hector Cifuentes Bulte, Yolanda Luna-Galiano, Jose David Rios, Pilar Ariza, Carlos Leiva Carlos
{"title":"探讨氧化石墨烯对废砂浆力学性能和耐久性的影响:微孔和纳米孔结构效应","authors":"Cristina Chacón Bonet, Hector Cifuentes Bulte, Yolanda Luna-Galiano, Jose David Rios, Pilar Ariza, Carlos Leiva Carlos","doi":"10.3989/mc.2023.351623","DOIUrl":null,"url":null,"abstract":"In this study is explored the use of construction and demolition waste as fine aggregate in mortars. The addition of nano-graphene oxide (0.1%wt) has also been evaluated. Tests were conducted to determine their density, humidity content, water absorption capacity and open void porosity (using water absorption) and the micro and nano-porosity using Hg intrusion and N2 absorption techniques, as well as their flexural and compressive strength and resistance to acid attacks. The mechanical properties of mortars manufactured with standard sand were better (30%) than made with waste aggregate. Mortars with both aggregates can be classified as M20. Nano-Graphene oxide acts as a filler, reducing the volume of macro and micro pores, thereby increasing the mechanical performance, especially when recycled aggregates are used (30% the flexural strength for recycled aggregates and 4% for standard sand). The addition of nano-graphene oxide reduces the transmission channels of acid within mortar.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the impact of graphene oxide on mechanical and durability properties of mortars incorporating demolition waste: micro and nano-pore structure effects\",\"authors\":\"Cristina Chacón Bonet, Hector Cifuentes Bulte, Yolanda Luna-Galiano, Jose David Rios, Pilar Ariza, Carlos Leiva Carlos\",\"doi\":\"10.3989/mc.2023.351623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study is explored the use of construction and demolition waste as fine aggregate in mortars. The addition of nano-graphene oxide (0.1%wt) has also been evaluated. Tests were conducted to determine their density, humidity content, water absorption capacity and open void porosity (using water absorption) and the micro and nano-porosity using Hg intrusion and N2 absorption techniques, as well as their flexural and compressive strength and resistance to acid attacks. The mechanical properties of mortars manufactured with standard sand were better (30%) than made with waste aggregate. Mortars with both aggregates can be classified as M20. Nano-Graphene oxide acts as a filler, reducing the volume of macro and micro pores, thereby increasing the mechanical performance, especially when recycled aggregates are used (30% the flexural strength for recycled aggregates and 4% for standard sand). The addition of nano-graphene oxide reduces the transmission channels of acid within mortar.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3989/mc.2023.351623\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3989/mc.2023.351623","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了建筑垃圾作为细骨料在砂浆中的应用。纳米氧化石墨烯(0.1%wt)的加入也进行了评价。通过试验确定了它们的密度、湿度含量、吸水能力和开孔孔隙率(吸水法),以及汞侵入和氮气吸收技术的微孔和纳米孔隙率,以及它们的抗折、抗压强度和抗酸侵蚀能力。用标准砂配制的砂浆力学性能优于用废骨料配制的砂浆力学性能(30%)。具有两种骨料的砂浆可归类为M20。纳米氧化石墨烯作为填料,减少了宏观和微观孔隙的体积,从而提高了机械性能,特别是当使用再生骨料时(再生骨料的抗弯强度为30%,标准砂为4%)。纳米氧化石墨烯的加入减少了酸在砂浆中的传输通道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring the impact of graphene oxide on mechanical and durability properties of mortars incorporating demolition waste: micro and nano-pore structure effects
In this study is explored the use of construction and demolition waste as fine aggregate in mortars. The addition of nano-graphene oxide (0.1%wt) has also been evaluated. Tests were conducted to determine their density, humidity content, water absorption capacity and open void porosity (using water absorption) and the micro and nano-porosity using Hg intrusion and N2 absorption techniques, as well as their flexural and compressive strength and resistance to acid attacks. The mechanical properties of mortars manufactured with standard sand were better (30%) than made with waste aggregate. Mortars with both aggregates can be classified as M20. Nano-Graphene oxide acts as a filler, reducing the volume of macro and micro pores, thereby increasing the mechanical performance, especially when recycled aggregates are used (30% the flexural strength for recycled aggregates and 4% for standard sand). The addition of nano-graphene oxide reduces the transmission channels of acid within mortar.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信