{"title":"动摩擦预滑动瞬态的能量耗散和迟滞循环","authors":"Michael Ruderman","doi":"10.21136/AM.2023.0283-22","DOIUrl":null,"url":null,"abstract":"<div><p>The problem of transient hysteresis cycles induced by the pre-sliding kinetic friction is relevant for analyzing the system dynamics, e.g., of micro- and nano-positioning instruments and devices and their controlled operation. The associated energy dissipation and consequent convergence of the state trajectories occur due to the structural hysteresis damping of contact surface asperities during reversals, and it is neither exponential (i.e., viscous type) nor finite-time (i.e., Coulomb type). In this paper, we discuss the energy dissipation and convergence during the pre-sliding cycles and show how a piecewise smooth force-displacement hysteresis map enters into the energy balance of an unforced system of the second order. An existing friction modeling approach with a low number of the free parameters, the Dahl model, is then exemplified alongside the developed analysis.</p></div>","PeriodicalId":55505,"journal":{"name":"Applications of Mathematics","volume":"68 6","pages":"845 - 860"},"PeriodicalIF":0.6000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.21136/AM.2023.0283-22.pdf","citationCount":"0","resultStr":"{\"title\":\"Energy dissipation and hysteresis cycles in pre-sliding transients of kinetic friction\",\"authors\":\"Michael Ruderman\",\"doi\":\"10.21136/AM.2023.0283-22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The problem of transient hysteresis cycles induced by the pre-sliding kinetic friction is relevant for analyzing the system dynamics, e.g., of micro- and nano-positioning instruments and devices and their controlled operation. The associated energy dissipation and consequent convergence of the state trajectories occur due to the structural hysteresis damping of contact surface asperities during reversals, and it is neither exponential (i.e., viscous type) nor finite-time (i.e., Coulomb type). In this paper, we discuss the energy dissipation and convergence during the pre-sliding cycles and show how a piecewise smooth force-displacement hysteresis map enters into the energy balance of an unforced system of the second order. An existing friction modeling approach with a low number of the free parameters, the Dahl model, is then exemplified alongside the developed analysis.</p></div>\",\"PeriodicalId\":55505,\"journal\":{\"name\":\"Applications of Mathematics\",\"volume\":\"68 6\",\"pages\":\"845 - 860\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.21136/AM.2023.0283-22.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applications of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.21136/AM.2023.0283-22\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.21136/AM.2023.0283-22","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Energy dissipation and hysteresis cycles in pre-sliding transients of kinetic friction
The problem of transient hysteresis cycles induced by the pre-sliding kinetic friction is relevant for analyzing the system dynamics, e.g., of micro- and nano-positioning instruments and devices and their controlled operation. The associated energy dissipation and consequent convergence of the state trajectories occur due to the structural hysteresis damping of contact surface asperities during reversals, and it is neither exponential (i.e., viscous type) nor finite-time (i.e., Coulomb type). In this paper, we discuss the energy dissipation and convergence during the pre-sliding cycles and show how a piecewise smooth force-displacement hysteresis map enters into the energy balance of an unforced system of the second order. An existing friction modeling approach with a low number of the free parameters, the Dahl model, is then exemplified alongside the developed analysis.
期刊介绍:
Applications of Mathematics publishes original high quality research papers that are directed towards applications of mathematical methods in various branches of science and engineering.
The main topics covered include:
- Mechanics of Solids;
- Fluid Mechanics;
- Electrical Engineering;
- Solutions of Differential and Integral Equations;
- Mathematical Physics;
- Optimization;
- Probability
Mathematical Statistics.
The journal is of interest to a wide audience of mathematicians, scientists and engineers concerned with the development of scientific computing, mathematical statistics and applicable mathematics in general.