{"title":"以减少Sarkhon和Qeshm燃气厂火炬气为目的,对凝析气稳定装置的运行条件和流程组成进行了改进","authors":"Farshad Farahbod","doi":"10.1007/s13202-023-01718-y","DOIUrl":null,"url":null,"abstract":"Abstract The gas condensate is one of the most valuable products of gas refineries. In unit 700 of the Sarkhon gas refinery, first, the gas condensate is separated from the feed. Then, the vapor pressure of the gas condensate is stabilized by de-ethanizer and de-butanizer towers. The H-701 and H-702 furnaces act as reboilers of the towers. In this research, unit 700 is simulated by HYSYS software. The product of this unit is examined to achieve desirable conditions. In addition, the best conditions are obtained to reduce the gas loss in this unit. The desirable conditions are introduced according to the operational problems of this unit. In this study, the environmental and economic loss due to the loss of hydrocarbons from the de-butanizer tower is identified. Results of this research show that the best operating temperature and pressure of the first feed are 40 °C and 29 bar, respectively. Also, the best temperature and pressure of the second feed are 20 °C and 28 bar, respectively. Also, the best temperature and pressure of the output stream from the S-701 as a feed of the T-701 are 34.35 °C and 22.51 bar, respectively.","PeriodicalId":16723,"journal":{"name":"Journal of Petroleum Exploration and Production Technology","volume":"103 3","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improvement of operating conditions and composition of streams in gas condensate stabilization unit with the aim of reducing flare gas in Sarkhon and Qeshm gas plant\",\"authors\":\"Farshad Farahbod\",\"doi\":\"10.1007/s13202-023-01718-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The gas condensate is one of the most valuable products of gas refineries. In unit 700 of the Sarkhon gas refinery, first, the gas condensate is separated from the feed. Then, the vapor pressure of the gas condensate is stabilized by de-ethanizer and de-butanizer towers. The H-701 and H-702 furnaces act as reboilers of the towers. In this research, unit 700 is simulated by HYSYS software. The product of this unit is examined to achieve desirable conditions. In addition, the best conditions are obtained to reduce the gas loss in this unit. The desirable conditions are introduced according to the operational problems of this unit. In this study, the environmental and economic loss due to the loss of hydrocarbons from the de-butanizer tower is identified. Results of this research show that the best operating temperature and pressure of the first feed are 40 °C and 29 bar, respectively. Also, the best temperature and pressure of the second feed are 20 °C and 28 bar, respectively. Also, the best temperature and pressure of the output stream from the S-701 as a feed of the T-701 are 34.35 °C and 22.51 bar, respectively.\",\"PeriodicalId\":16723,\"journal\":{\"name\":\"Journal of Petroleum Exploration and Production Technology\",\"volume\":\"103 3\",\"pages\":\"0\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Petroleum Exploration and Production Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13202-023-01718-y\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petroleum Exploration and Production Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13202-023-01718-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Improvement of operating conditions and composition of streams in gas condensate stabilization unit with the aim of reducing flare gas in Sarkhon and Qeshm gas plant
Abstract The gas condensate is one of the most valuable products of gas refineries. In unit 700 of the Sarkhon gas refinery, first, the gas condensate is separated from the feed. Then, the vapor pressure of the gas condensate is stabilized by de-ethanizer and de-butanizer towers. The H-701 and H-702 furnaces act as reboilers of the towers. In this research, unit 700 is simulated by HYSYS software. The product of this unit is examined to achieve desirable conditions. In addition, the best conditions are obtained to reduce the gas loss in this unit. The desirable conditions are introduced according to the operational problems of this unit. In this study, the environmental and economic loss due to the loss of hydrocarbons from the de-butanizer tower is identified. Results of this research show that the best operating temperature and pressure of the first feed are 40 °C and 29 bar, respectively. Also, the best temperature and pressure of the second feed are 20 °C and 28 bar, respectively. Also, the best temperature and pressure of the output stream from the S-701 as a feed of the T-701 are 34.35 °C and 22.51 bar, respectively.
期刊介绍:
The Journal of Petroleum Exploration and Production Technology is an international open access journal that publishes original and review articles as well as book reviews on leading edge studies in the field of petroleum engineering, petroleum geology and exploration geophysics and the implementation of related technologies to the development and management of oil and gas reservoirs from their discovery through their entire production cycle.
Focusing on:
Reservoir characterization and modeling
Unconventional oil and gas reservoirs
Geophysics: Acquisition and near surface
Geophysics Modeling and Imaging
Geophysics: Interpretation
Geophysics: Processing
Production Engineering
Formation Evaluation
Reservoir Management
Petroleum Geology
Enhanced Recovery
Geomechanics
Drilling
Completions
The Journal of Petroleum Exploration and Production Technology is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies