{"title":"二维柱塞泵凸轮导轨搅拌力矩分析建模及实验验证","authors":"Chenchen Zhang, Yi Chen, Chenhang Zhu, Chuan Ding, Sheng Li, Jian Ruan","doi":"10.1177/16878132231195739","DOIUrl":null,"url":null,"abstract":"For 2D piston pump the churning torque of its cam guide rails at high speed is one of the main sources of mechanical efficiency loss. To conveniently calculate the churning torque and also provide guidance for future optimization of churning torque reduction, an accurate analytical model of constant acceleration and constant deceleration cam guide rail assembly of the stacked-rollers 2D piston pump is established, where the whole churning torque is divided into the peripheral churning torque, the pushing flow churning torque, and the end face churning torque. Then the analytical model is verified by CFD simulation preliminarily. Analytical modeling shows that at 16,000 rpm, the churning torque reaches about 0.826 N m, where the peripheral churning torque, the pushing flow churning torque, and the end face churning torque account for about 55.4%, 37.3%, and 7.3% of the total torque respectively, indicating that the structural parameters related to the pushing flow torque should be optimized with first priority at high rotational speed. Finally, the churning torque at 1000–16,000 rpm was experimentally measured and the influence of oil temperature was considered. The experimental results are in good agreement with the results of analytical modeling and CFD simulation, thus verifying the correctness of the proposed analytical model.","PeriodicalId":49110,"journal":{"name":"Advances in Mechanical Engineering","volume":"3 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical modeling and experimental verification of churning torque for cam guide rails of 2D piston pump\",\"authors\":\"Chenchen Zhang, Yi Chen, Chenhang Zhu, Chuan Ding, Sheng Li, Jian Ruan\",\"doi\":\"10.1177/16878132231195739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For 2D piston pump the churning torque of its cam guide rails at high speed is one of the main sources of mechanical efficiency loss. To conveniently calculate the churning torque and also provide guidance for future optimization of churning torque reduction, an accurate analytical model of constant acceleration and constant deceleration cam guide rail assembly of the stacked-rollers 2D piston pump is established, where the whole churning torque is divided into the peripheral churning torque, the pushing flow churning torque, and the end face churning torque. Then the analytical model is verified by CFD simulation preliminarily. Analytical modeling shows that at 16,000 rpm, the churning torque reaches about 0.826 N m, where the peripheral churning torque, the pushing flow churning torque, and the end face churning torque account for about 55.4%, 37.3%, and 7.3% of the total torque respectively, indicating that the structural parameters related to the pushing flow torque should be optimized with first priority at high rotational speed. Finally, the churning torque at 1000–16,000 rpm was experimentally measured and the influence of oil temperature was considered. The experimental results are in good agreement with the results of analytical modeling and CFD simulation, thus verifying the correctness of the proposed analytical model.\",\"PeriodicalId\":49110,\"journal\":{\"name\":\"Advances in Mechanical Engineering\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/16878132231195739\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/16878132231195739","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
摘要
对于二维柱塞泵来说,凸轮导轨高速旋转力矩是其机械效率损失的主要来源之一。为方便计算搅拌力矩,并为今后优化减搅拌力矩提供指导,建立了二维叠滚子柱塞泵恒加减速凸轮导轨总成的精确解析模型,将整个搅拌力矩分为外围搅拌力矩、推进流搅拌力矩和端面搅拌力矩。然后通过CFD仿真对分析模型进行了初步验证。解析建模结果表明,在16000 rpm时,转子的搅拌转矩约为0.826 N m,其中外缘搅拌转矩、推流搅拌转矩和端面搅拌转矩分别约占总转矩的55.4%、37.3%和7.3%,说明在高转速下,应优先优化与推流转矩相关的结构参数。最后对转速在1000 ~ 16000 rpm时的搅拌转矩进行了实验测量,并考虑了油温对搅拌转矩的影响。实验结果与解析建模和CFD仿真结果吻合较好,验证了所建解析模型的正确性。
Analytical modeling and experimental verification of churning torque for cam guide rails of 2D piston pump
For 2D piston pump the churning torque of its cam guide rails at high speed is one of the main sources of mechanical efficiency loss. To conveniently calculate the churning torque and also provide guidance for future optimization of churning torque reduction, an accurate analytical model of constant acceleration and constant deceleration cam guide rail assembly of the stacked-rollers 2D piston pump is established, where the whole churning torque is divided into the peripheral churning torque, the pushing flow churning torque, and the end face churning torque. Then the analytical model is verified by CFD simulation preliminarily. Analytical modeling shows that at 16,000 rpm, the churning torque reaches about 0.826 N m, where the peripheral churning torque, the pushing flow churning torque, and the end face churning torque account for about 55.4%, 37.3%, and 7.3% of the total torque respectively, indicating that the structural parameters related to the pushing flow torque should be optimized with first priority at high rotational speed. Finally, the churning torque at 1000–16,000 rpm was experimentally measured and the influence of oil temperature was considered. The experimental results are in good agreement with the results of analytical modeling and CFD simulation, thus verifying the correctness of the proposed analytical model.
期刊介绍:
Advances in Mechanical Engineering (AIME) is a JCR Ranked, peer-reviewed, open access journal which publishes a wide range of original research and review articles. The journal Editorial Board welcomes manuscripts in both fundamental and applied research areas, and encourages submissions which contribute novel and innovative insights to the field of mechanical engineering