基于点集初始化的数据聚类混合变长蜘蛛猴优化

IF 3.3 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Athraa Qays Obaid, Maytham Alabbas
{"title":"基于点集初始化的数据聚类混合变长蜘蛛猴优化","authors":"Athraa Qays Obaid, Maytham Alabbas","doi":"10.31449/inf.v47i8.4872","DOIUrl":null,"url":null,"abstract":"Data clustering refers to grouping data points that are similar in some way. This can be done in accordance with their patterns or characteristics. It can be used for various purposes, including image analysis, pattern recognition, and data mining. The K-means algorithm, commonly used for clustering, is subject to limitations, such as requiring the number of clusters to be specified and being sensitive to initial center points. To address these limitations, this study proposes a novel method to determine the optimal number of clusters and initial centroids using a variable-length spider monkey optimization algorithm (VLSMO) with a hybrid proposed measure. Results of experiments on real-life datasets demonstrate that VLSMO performs better than the standard k-means in terms of accuracy and clustering capacity.","PeriodicalId":56292,"journal":{"name":"Informatica","volume":"32 1","pages":"0"},"PeriodicalIF":3.3000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid Variable-Length Spider Monkey Optimization with Good-Point Set Initialization for Data Clustering\",\"authors\":\"Athraa Qays Obaid, Maytham Alabbas\",\"doi\":\"10.31449/inf.v47i8.4872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data clustering refers to grouping data points that are similar in some way. This can be done in accordance with their patterns or characteristics. It can be used for various purposes, including image analysis, pattern recognition, and data mining. The K-means algorithm, commonly used for clustering, is subject to limitations, such as requiring the number of clusters to be specified and being sensitive to initial center points. To address these limitations, this study proposes a novel method to determine the optimal number of clusters and initial centroids using a variable-length spider monkey optimization algorithm (VLSMO) with a hybrid proposed measure. Results of experiments on real-life datasets demonstrate that VLSMO performs better than the standard k-means in terms of accuracy and clustering capacity.\",\"PeriodicalId\":56292,\"journal\":{\"name\":\"Informatica\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Informatica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31449/inf.v47i8.4872\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31449/inf.v47i8.4872","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

数据聚类指的是对在某种程度上相似的数据点进行分组。这可以根据他们的模式或特点来做。它可以用于各种目的,包括图像分析、模式识别和数据挖掘。通常用于聚类的K-means算法存在局限性,例如需要指定聚类的数量,并且对初始中心点很敏感。为了解决这些限制,本研究提出了一种新的方法来确定簇和初始质心的最佳数量,使用可变长度蜘蛛猴优化算法(VLSMO)和混合提议度量。在实际数据集上的实验结果表明,VLSMO在准确率和聚类能力方面都优于标准k-means。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid Variable-Length Spider Monkey Optimization with Good-Point Set Initialization for Data Clustering
Data clustering refers to grouping data points that are similar in some way. This can be done in accordance with their patterns or characteristics. It can be used for various purposes, including image analysis, pattern recognition, and data mining. The K-means algorithm, commonly used for clustering, is subject to limitations, such as requiring the number of clusters to be specified and being sensitive to initial center points. To address these limitations, this study proposes a novel method to determine the optimal number of clusters and initial centroids using a variable-length spider monkey optimization algorithm (VLSMO) with a hybrid proposed measure. Results of experiments on real-life datasets demonstrate that VLSMO performs better than the standard k-means in terms of accuracy and clustering capacity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Informatica
Informatica 工程技术-计算机:信息系统
CiteScore
5.90
自引率
6.90%
发文量
19
审稿时长
12 months
期刊介绍: The quarterly journal Informatica provides an international forum for high-quality original research and publishes papers on mathematical simulation and optimization, recognition and control, programming theory and systems, automation systems and elements. Informatica provides a multidisciplinary forum for scientists and engineers involved in research and design including experts who implement and manage information systems applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信