具有无限维决策空间的非凸风险规避随机优化的渐近一致性

IF 1.9 3区 数学 Q2 MATHEMATICS, APPLIED
Johannes Milz, Thomas M. Surowiec
{"title":"具有无限维决策空间的非凸风险规避随机优化的渐近一致性","authors":"Johannes Milz, Thomas M. Surowiec","doi":"10.1287/moor.2022.0200","DOIUrl":null,"url":null,"abstract":"Optimal values and solutions of empirical approximations of stochastic optimization problems can be viewed as statistical estimators of their true values. From this perspective, it is important to understand the asymptotic behavior of these estimators as the sample size goes to infinity. This area of study has a long tradition in stochastic programming. However, the literature is lacking consistency analysis for problems in which the decision variables are taken from an infinite-dimensional space, which arise in optimal control, scientific machine learning, and statistical estimation. By exploiting the typical problem structures found in these applications that give rise to hidden norm compactness properties for solution sets, we prove consistency results for nonconvex risk-averse stochastic optimization problems formulated in infinite-dimensional space. The proof is based on several crucial results from the theory of variational convergence. The theoretical results are demonstrated for several important problem classes arising in the literature.","PeriodicalId":49852,"journal":{"name":"Mathematics of Operations Research","volume":"96 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Asymptotic Consistency for Nonconvex Risk-Averse Stochastic Optimization with Infinite-Dimensional Decision Spaces\",\"authors\":\"Johannes Milz, Thomas M. Surowiec\",\"doi\":\"10.1287/moor.2022.0200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimal values and solutions of empirical approximations of stochastic optimization problems can be viewed as statistical estimators of their true values. From this perspective, it is important to understand the asymptotic behavior of these estimators as the sample size goes to infinity. This area of study has a long tradition in stochastic programming. However, the literature is lacking consistency analysis for problems in which the decision variables are taken from an infinite-dimensional space, which arise in optimal control, scientific machine learning, and statistical estimation. By exploiting the typical problem structures found in these applications that give rise to hidden norm compactness properties for solution sets, we prove consistency results for nonconvex risk-averse stochastic optimization problems formulated in infinite-dimensional space. The proof is based on several crucial results from the theory of variational convergence. The theoretical results are demonstrated for several important problem classes arising in the literature.\",\"PeriodicalId\":49852,\"journal\":{\"name\":\"Mathematics of Operations Research\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of Operations Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1287/moor.2022.0200\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Operations Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/moor.2022.0200","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

随机优化问题的经验逼近的最优值和解可以看作是其真值的统计估计。从这个角度来看,当样本量趋于无穷时,理解这些估计量的渐近行为是很重要的。这一研究领域在随机规划中有着悠久的传统。然而,文献缺乏对决策变量取自无限维空间的问题的一致性分析,这些问题出现在最优控制、科学机器学习和统计估计中。通过利用在这些应用中发现的导致解集隐含范数紧性的典型问题结构,我们证明了在无限维空间中表述的非凸风险规避随机优化问题的一致性结果。这个证明是基于变分收敛理论的几个关键结果。对文献中出现的几个重要问题类的理论结果进行了论证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic Consistency for Nonconvex Risk-Averse Stochastic Optimization with Infinite-Dimensional Decision Spaces
Optimal values and solutions of empirical approximations of stochastic optimization problems can be viewed as statistical estimators of their true values. From this perspective, it is important to understand the asymptotic behavior of these estimators as the sample size goes to infinity. This area of study has a long tradition in stochastic programming. However, the literature is lacking consistency analysis for problems in which the decision variables are taken from an infinite-dimensional space, which arise in optimal control, scientific machine learning, and statistical estimation. By exploiting the typical problem structures found in these applications that give rise to hidden norm compactness properties for solution sets, we prove consistency results for nonconvex risk-averse stochastic optimization problems formulated in infinite-dimensional space. The proof is based on several crucial results from the theory of variational convergence. The theoretical results are demonstrated for several important problem classes arising in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematics of Operations Research
Mathematics of Operations Research 管理科学-应用数学
CiteScore
3.40
自引率
5.90%
发文量
178
审稿时长
15.0 months
期刊介绍: Mathematics of Operations Research is an international journal of the Institute for Operations Research and the Management Sciences (INFORMS). The journal invites articles concerned with the mathematical and computational foundations in the areas of continuous, discrete, and stochastic optimization; mathematical programming; dynamic programming; stochastic processes; stochastic models; simulation methodology; control and adaptation; networks; game theory; and decision theory. Also sought are contributions to learning theory and machine learning that have special relevance to decision making, operations research, and management science. The emphasis is on originality, quality, and importance; correctness alone is not sufficient. Significant developments in operations research and management science not having substantial mathematical interest should be directed to other journals such as Management Science or Operations Research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信