基于qos驱动的工业物联网分布式协同数据卸载与异构资源调度

Fan Zhang, Guangjie Han, Aohan Li, Chuan Lin, Li Liu, Yu Zhang, Yan Peng
{"title":"基于qos驱动的工业物联网分布式协同数据卸载与异构资源调度","authors":"Fan Zhang, Guangjie Han, Aohan Li, Chuan Lin, Li Liu, Yu Zhang, Yan Peng","doi":"10.1109/iotm.001.2200264","DOIUrl":null,"url":null,"abstract":"Edge computing has become a powerful paradigm to fulfill the diversified quality of service (QoS) demands of the Industrial Internet of Things (IIoT) applications. This study examines the cooperative data offloading (DO) and heterogeneous resource scheduling (RS) problem for maximizing long-term system utility. Owing to the dynamics, high connectivity density, and diverse QoS demands of IIoT, a QoS-driven distributed decision-making (QDDM) framework is proposed to address this problem. Specifically, this framework decomposes the primal problem into two subproblems: industrial terminal device (ITD)-side DO and edge server (EDS)-side RS. Then, a modified soft actor-critic (SAC)-based multi-agent deep reinforcement learning (MSMD) algorithm is proposed to address the ITD-side DO subproblem, which can achieve more accurate estimation of the Q-values and solve both the centralized-decentralized mismatch and the multi-agent credit assignment issues. Based on the DO decisions of each ITD, a linear approximation method is proposed to transform the EDS-side RS subproblem into an easily-solved linear programming subproblem. Finally, a real-world IIoT experiment platform is built to evaluate the performance of the QDDM framework. The evaluation results demonstrate that the QDDM framework effectively increases the long-term system utility.","PeriodicalId":235472,"journal":{"name":"IEEE Internet of Things Magazine","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"QoS-Driven Distributed Cooperative Data Offloading and Heterogeneous Resource Scheduling for IIoT\",\"authors\":\"Fan Zhang, Guangjie Han, Aohan Li, Chuan Lin, Li Liu, Yu Zhang, Yan Peng\",\"doi\":\"10.1109/iotm.001.2200264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Edge computing has become a powerful paradigm to fulfill the diversified quality of service (QoS) demands of the Industrial Internet of Things (IIoT) applications. This study examines the cooperative data offloading (DO) and heterogeneous resource scheduling (RS) problem for maximizing long-term system utility. Owing to the dynamics, high connectivity density, and diverse QoS demands of IIoT, a QoS-driven distributed decision-making (QDDM) framework is proposed to address this problem. Specifically, this framework decomposes the primal problem into two subproblems: industrial terminal device (ITD)-side DO and edge server (EDS)-side RS. Then, a modified soft actor-critic (SAC)-based multi-agent deep reinforcement learning (MSMD) algorithm is proposed to address the ITD-side DO subproblem, which can achieve more accurate estimation of the Q-values and solve both the centralized-decentralized mismatch and the multi-agent credit assignment issues. Based on the DO decisions of each ITD, a linear approximation method is proposed to transform the EDS-side RS subproblem into an easily-solved linear programming subproblem. Finally, a real-world IIoT experiment platform is built to evaluate the performance of the QDDM framework. The evaluation results demonstrate that the QDDM framework effectively increases the long-term system utility.\",\"PeriodicalId\":235472,\"journal\":{\"name\":\"IEEE Internet of Things Magazine\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Internet of Things Magazine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iotm.001.2200264\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Internet of Things Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iotm.001.2200264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

边缘计算已成为满足工业物联网(IIoT)应用多样化服务质量(QoS)需求的强大范例。本研究探讨了协同数据卸载(DO)和异构资源调度(RS)问题,以最大化系统的长期效用。针对工业物联网的动态性、高连接密度和多样化的QoS需求,提出了一种QoS驱动的分布式决策(QDDM)框架。该框架将原始问题分解为工业终端设备(ITD)侧DO和边缘服务器(EDS)侧RS两个子问题,然后提出了一种改进的基于软行为者评价(SAC)的多智能体深度强化学习(MSMD)算法来解决ITD侧DO子问题,该算法可以更准确地估计q值,并解决了集中-分散不匹配和多智能体信用分配问题。基于每个过渡段的DO决策,提出了一种线性逼近方法,将eds侧RS子问题转化为易于求解的线性规划子问题。最后,建立了一个实际的工业物联网实验平台来评估QDDM框架的性能。评价结果表明,QDDM框架有效地提高了系统的长期效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
QoS-Driven Distributed Cooperative Data Offloading and Heterogeneous Resource Scheduling for IIoT
Edge computing has become a powerful paradigm to fulfill the diversified quality of service (QoS) demands of the Industrial Internet of Things (IIoT) applications. This study examines the cooperative data offloading (DO) and heterogeneous resource scheduling (RS) problem for maximizing long-term system utility. Owing to the dynamics, high connectivity density, and diverse QoS demands of IIoT, a QoS-driven distributed decision-making (QDDM) framework is proposed to address this problem. Specifically, this framework decomposes the primal problem into two subproblems: industrial terminal device (ITD)-side DO and edge server (EDS)-side RS. Then, a modified soft actor-critic (SAC)-based multi-agent deep reinforcement learning (MSMD) algorithm is proposed to address the ITD-side DO subproblem, which can achieve more accurate estimation of the Q-values and solve both the centralized-decentralized mismatch and the multi-agent credit assignment issues. Based on the DO decisions of each ITD, a linear approximation method is proposed to transform the EDS-side RS subproblem into an easily-solved linear programming subproblem. Finally, a real-world IIoT experiment platform is built to evaluate the performance of the QDDM framework. The evaluation results demonstrate that the QDDM framework effectively increases the long-term system utility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信