基于陀螺RTS系统的智能综采工作面自动实时绝对定位技术

IF 1.2 4区 工程技术 Q3 MINING & MINERAL PROCESSING
{"title":"基于陀螺RTS系统的智能综采工作面自动实时绝对定位技术","authors":"","doi":"10.24425/ams.2023.146863","DOIUrl":null,"url":null,"abstract":"The absolute positions of shearers on advancing coal faces are requisite for providing references for adaptive mining combined with geological models. common coalmine localization techniques (e.g. uWB, inS, etc.) are not fully applicable to adaptive mining due to their drifting error or the messy environment. The gyro robotic total station (RTS) is versatile and precise in measuring coordinates in coal mines, while its conventional usage is of low automation and poor timeliness, impeding its application on mining faces. This article proposed an automated gyro RTS system for real-time absolute positioning on fully mechanised coal faces. The measuring process was changed to fit mining requirements, and a new state-transferring model was used to automate it. Programs were developed and installed in available instruments, forming a prototype. Field experiments were carried out on a simulative working face, verifying the system’s accuracy and applicability. Results show that the relative positioning error is better than 2.6143×10-4, which meets the demand of advancing faces. The error of the gyro is estimated at 55.5187”, justifying its nominal indicators. To sum up, the automated gyro RTS system proposed in this paper can offer real-time and accurate absolute positions of equipment on working faces, supporting adaptive mining combined with the geological model.","PeriodicalId":55468,"journal":{"name":"Archives of Mining Sciences","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated Real-Time Absolute Positioning Technology on Intelligent Fully Mechanised Coal Faces Using the Gyro RTS System\",\"authors\":\"\",\"doi\":\"10.24425/ams.2023.146863\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The absolute positions of shearers on advancing coal faces are requisite for providing references for adaptive mining combined with geological models. common coalmine localization techniques (e.g. uWB, inS, etc.) are not fully applicable to adaptive mining due to their drifting error or the messy environment. The gyro robotic total station (RTS) is versatile and precise in measuring coordinates in coal mines, while its conventional usage is of low automation and poor timeliness, impeding its application on mining faces. This article proposed an automated gyro RTS system for real-time absolute positioning on fully mechanised coal faces. The measuring process was changed to fit mining requirements, and a new state-transferring model was used to automate it. Programs were developed and installed in available instruments, forming a prototype. Field experiments were carried out on a simulative working face, verifying the system’s accuracy and applicability. Results show that the relative positioning error is better than 2.6143×10-4, which meets the demand of advancing faces. The error of the gyro is estimated at 55.5187”, justifying its nominal indicators. To sum up, the automated gyro RTS system proposed in this paper can offer real-time and accurate absolute positions of equipment on working faces, supporting adaptive mining combined with the geological model.\",\"PeriodicalId\":55468,\"journal\":{\"name\":\"Archives of Mining Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Mining Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24425/ams.2023.146863\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MINING & MINERAL PROCESSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Mining Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/ams.2023.146863","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated Real-Time Absolute Positioning Technology on Intelligent Fully Mechanised Coal Faces Using the Gyro RTS System
The absolute positions of shearers on advancing coal faces are requisite for providing references for adaptive mining combined with geological models. common coalmine localization techniques (e.g. uWB, inS, etc.) are not fully applicable to adaptive mining due to their drifting error or the messy environment. The gyro robotic total station (RTS) is versatile and precise in measuring coordinates in coal mines, while its conventional usage is of low automation and poor timeliness, impeding its application on mining faces. This article proposed an automated gyro RTS system for real-time absolute positioning on fully mechanised coal faces. The measuring process was changed to fit mining requirements, and a new state-transferring model was used to automate it. Programs were developed and installed in available instruments, forming a prototype. Field experiments were carried out on a simulative working face, verifying the system’s accuracy and applicability. Results show that the relative positioning error is better than 2.6143×10-4, which meets the demand of advancing faces. The error of the gyro is estimated at 55.5187”, justifying its nominal indicators. To sum up, the automated gyro RTS system proposed in this paper can offer real-time and accurate absolute positions of equipment on working faces, supporting adaptive mining combined with the geological model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of Mining Sciences
Archives of Mining Sciences 工程技术-矿业与矿物加工
CiteScore
2.40
自引率
16.70%
发文量
0
审稿时长
20 months
期刊介绍: Archives of Mining Sciences (AMS) is concerned with original research, new developments and case studies in mining sciences and energy, civil engineering and environmental engineering. The journal provides an international forum for the publication of high quality research results in: mining technologies, mineral processing, stability of mine workings, mining machine science, ventilation systems, rock mechanics, termodynamics, underground storage of oil and gas, mining and engineering geology, geotechnical engineering, tunnelling, design and construction of tunnels, design and construction on mining areas, mining geodesy, environmental protection in mining, revitalisation of postindustrial areas. Papers are welcomed on all relevant topics and especially on theoretical developments, analytical methods, numerical methods, rock testing, site investigation, and case studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信