非关键参数平面环面上$SU(3)$ Toda系统解的数量和偶数性

IF 1.3 1区 数学 Q1 MATHEMATICS
Zhijie Chen, Chang-Shou Lin
{"title":"非关键参数平面环面上$SU(3)$ Toda系统解的数量和偶数性","authors":"Zhijie Chen, Chang-Shou Lin","doi":"10.4310/jdg/1695236592","DOIUrl":null,"url":null,"abstract":"We study the $SU(3)$ Toda system with singular sources \\begin{equation*} \\begin{cases} \\Delta u+2e^{u}-e^{v}=4\\pi \\sum _{k=0}^{m} n_{1,k}\\delta _{p_{k}} \\quad \\text{ on }\\; E_{\\tau}, \\\\ \\Delta v+2e^{v}-e^{u}=4\\pi \\sum _{k=0}^{m} n_{2,k}\\delta _{p_{k}} \\quad \\text{ on }\\; E_{\\tau}, \\end{cases} \\end{equation*} where $E_{\\tau}:=\\mathbb{C}/(\\mathbb{Z}+\\mathbb{Z}\\tau )$ with $\\operatorname{Im}\\tau \\gt 0$ is a flat torus, $\\delta _{p_{k}}$ is the Dirac measure at $p_{k}$, and $n_{i,k}\\in \\mathbb{Z}_{\\geq 0}$ satisfy $\\sum _{k}n_{1,k}\\not \\equiv \\sum _{k} n_{2,k} \\mod 3$. This is known as the non-critical case and it follows from a general existence result of [$\\href{ https://doi.org/10.1016/j.aim.2015.07.036}{3}$] that solutions always exist. In this paper we prove that (i) The system has at most \\begin{equation*} \\frac{1}{3\\times 2^{m+1}}\\prod _{k=0}^{m}(n_{1,k}+1)(n_{2,k}+1)(n_{1,k}+n_{2,k}+2) \\in \\mathbb{N} \\end{equation*} solutions. We have several examples to indicate that this upper bound should be sharp. Our proof presents a nice combination of the apriori estimates from analysis and the classical Bézout theorem from algebraic geometry. (ii) For $m=0$ and $p_{0}=0$, the system has even solutions if and only if at least one of $\\{n_{1,0}, n_{2,0}\\}$ is even. Furthermore, if $n_{1,0}$ is odd, $n_{2,0}$ is even and $n_{1,0}\\lt n_{2,0}$, then except for finitely many $\\tau $’s modulo $SL(2,\\mathbb{Z})$ action, the system has exactly $\\frac{n_{1,0}+1}{2}$ even solutions. Differently from [$\\href{ https://doi.org/10.1016/j.aim.2015.07.036}{3}$], our proofs are based on the integrability of the Toda system, and also imply a general non-existence result for even solutions of the Toda system with four singular sources.","PeriodicalId":15642,"journal":{"name":"Journal of Differential Geometry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On number and evenness of solutions of the $SU(3)$ Toda system on flat tori with non-critical parameters\",\"authors\":\"Zhijie Chen, Chang-Shou Lin\",\"doi\":\"10.4310/jdg/1695236592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the $SU(3)$ Toda system with singular sources \\\\begin{equation*} \\\\begin{cases} \\\\Delta u+2e^{u}-e^{v}=4\\\\pi \\\\sum _{k=0}^{m} n_{1,k}\\\\delta _{p_{k}} \\\\quad \\\\text{ on }\\\\; E_{\\\\tau}, \\\\\\\\ \\\\Delta v+2e^{v}-e^{u}=4\\\\pi \\\\sum _{k=0}^{m} n_{2,k}\\\\delta _{p_{k}} \\\\quad \\\\text{ on }\\\\; E_{\\\\tau}, \\\\end{cases} \\\\end{equation*} where $E_{\\\\tau}:=\\\\mathbb{C}/(\\\\mathbb{Z}+\\\\mathbb{Z}\\\\tau )$ with $\\\\operatorname{Im}\\\\tau \\\\gt 0$ is a flat torus, $\\\\delta _{p_{k}}$ is the Dirac measure at $p_{k}$, and $n_{i,k}\\\\in \\\\mathbb{Z}_{\\\\geq 0}$ satisfy $\\\\sum _{k}n_{1,k}\\\\not \\\\equiv \\\\sum _{k} n_{2,k} \\\\mod 3$. This is known as the non-critical case and it follows from a general existence result of [$\\\\href{ https://doi.org/10.1016/j.aim.2015.07.036}{3}$] that solutions always exist. In this paper we prove that (i) The system has at most \\\\begin{equation*} \\\\frac{1}{3\\\\times 2^{m+1}}\\\\prod _{k=0}^{m}(n_{1,k}+1)(n_{2,k}+1)(n_{1,k}+n_{2,k}+2) \\\\in \\\\mathbb{N} \\\\end{equation*} solutions. We have several examples to indicate that this upper bound should be sharp. Our proof presents a nice combination of the apriori estimates from analysis and the classical Bézout theorem from algebraic geometry. (ii) For $m=0$ and $p_{0}=0$, the system has even solutions if and only if at least one of $\\\\{n_{1,0}, n_{2,0}\\\\}$ is even. Furthermore, if $n_{1,0}$ is odd, $n_{2,0}$ is even and $n_{1,0}\\\\lt n_{2,0}$, then except for finitely many $\\\\tau $’s modulo $SL(2,\\\\mathbb{Z})$ action, the system has exactly $\\\\frac{n_{1,0}+1}{2}$ even solutions. Differently from [$\\\\href{ https://doi.org/10.1016/j.aim.2015.07.036}{3}$], our proofs are based on the integrability of the Toda system, and also imply a general non-existence result for even solutions of the Toda system with four singular sources.\",\"PeriodicalId\":15642,\"journal\":{\"name\":\"Journal of Differential Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/jdg/1695236592\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/jdg/1695236592","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

我们研究了具有奇异源的$SU(3)$ Toda系统\begin{equation*} \begin{cases} \Delta u+2e^{u}-e^{v}=4\pi \sum _{k=0}^{m} n_{1,k}\delta _{p_{k}} \quad \text{ on }\; E_{\tau}, \\ \Delta v+2e^{v}-e^{u}=4\pi \sum _{k=0}^{m} n_{2,k}\delta _{p_{k}} \quad \text{ on }\; E_{\tau}, \end{cases} \end{equation*},其中$E_{\tau}:=\mathbb{C}/(\mathbb{Z}+\mathbb{Z}\tau )$和$\operatorname{Im}\tau \gt 0$是一个平面环面,$\delta _{p_{k}}$是在$p_{k}$处的狄拉克测度,$n_{i,k}\in \mathbb{Z}_{\geq 0}$满足$\sum _{k}n_{1,k}\not \equiv \sum _{k} n_{2,k} \mod 3$。这就是所谓的非临界情况,它由[$\href{ https://doi.org/10.1016/j.aim.2015.07.036}{3}$]的一般存在性结果得出,解总是存在的。本文证明了(i)系统最多有\begin{equation*} \frac{1}{3\times 2^{m+1}}\prod _{k=0}^{m}(n_{1,k}+1)(n_{2,k}+1)(n_{1,k}+n_{2,k}+2) \in \mathbb{N} \end{equation*}个解。我们有几个例子表明这个上界应该是尖锐的。我们的证明很好地结合了分析中的先验估计和代数几何中的经典bsamzout定理。(ii)对于$m=0$和$p_{0}=0$,系统有偶解当且仅当$\{n_{1,0}, n_{2,0}\}$中至少有一个是偶解。进一步,如果$n_{1,0}$为奇数,$n_{2,0}$为偶数,$n_{1,0}\lt n_{2,0}$,则除了$\tau $的模$SL(2,\mathbb{Z})$作用有限个外,系统恰好有$\frac{n_{1,0}+1}{2}$个偶解。与[$\href{ https://doi.org/10.1016/j.aim.2015.07.036}{3}$]不同的是,我们的证明是基于Toda系统的可积性,并且还隐含了Toda系统的四个奇异源偶解的一般不存在性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On number and evenness of solutions of the $SU(3)$ Toda system on flat tori with non-critical parameters
We study the $SU(3)$ Toda system with singular sources \begin{equation*} \begin{cases} \Delta u+2e^{u}-e^{v}=4\pi \sum _{k=0}^{m} n_{1,k}\delta _{p_{k}} \quad \text{ on }\; E_{\tau}, \\ \Delta v+2e^{v}-e^{u}=4\pi \sum _{k=0}^{m} n_{2,k}\delta _{p_{k}} \quad \text{ on }\; E_{\tau}, \end{cases} \end{equation*} where $E_{\tau}:=\mathbb{C}/(\mathbb{Z}+\mathbb{Z}\tau )$ with $\operatorname{Im}\tau \gt 0$ is a flat torus, $\delta _{p_{k}}$ is the Dirac measure at $p_{k}$, and $n_{i,k}\in \mathbb{Z}_{\geq 0}$ satisfy $\sum _{k}n_{1,k}\not \equiv \sum _{k} n_{2,k} \mod 3$. This is known as the non-critical case and it follows from a general existence result of [$\href{ https://doi.org/10.1016/j.aim.2015.07.036}{3}$] that solutions always exist. In this paper we prove that (i) The system has at most \begin{equation*} \frac{1}{3\times 2^{m+1}}\prod _{k=0}^{m}(n_{1,k}+1)(n_{2,k}+1)(n_{1,k}+n_{2,k}+2) \in \mathbb{N} \end{equation*} solutions. We have several examples to indicate that this upper bound should be sharp. Our proof presents a nice combination of the apriori estimates from analysis and the classical Bézout theorem from algebraic geometry. (ii) For $m=0$ and $p_{0}=0$, the system has even solutions if and only if at least one of $\{n_{1,0}, n_{2,0}\}$ is even. Furthermore, if $n_{1,0}$ is odd, $n_{2,0}$ is even and $n_{1,0}\lt n_{2,0}$, then except for finitely many $\tau $’s modulo $SL(2,\mathbb{Z})$ action, the system has exactly $\frac{n_{1,0}+1}{2}$ even solutions. Differently from [$\href{ https://doi.org/10.1016/j.aim.2015.07.036}{3}$], our proofs are based on the integrability of the Toda system, and also imply a general non-existence result for even solutions of the Toda system with four singular sources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
24
审稿时长
>12 weeks
期刊介绍: Publishes the latest research in differential geometry and related areas of differential equations, mathematical physics, algebraic geometry, and geometric topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信