基于卷积神经网络的流行深度造假方法效率评价

Noor K. Alzurf, Mohammed S. Altaei
{"title":"基于卷积神经网络的流行深度造假方法效率评价","authors":"Noor K. Alzurf, Mohammed S. Altaei","doi":"10.22401/anjs.26.3.07","DOIUrl":null,"url":null,"abstract":"Many deepfake techniques in the early years are spread to create successful deepfake videos (i.e., Face Swap, Deep Fake, etc.). These methods enable anyone to manipulate faces in videos, which can negatively impact society. One way to reduce this problem is the deepfake detection. It has become such a hot topic and the most crucial task in recent years. This paper proposes a deep learning model to detect and evaluate deepfake video methods using convolutional neural networks. The model is evaluated on the FaceForensics++ video dataset that contains four different deepfake ways (deepfake, face 2 face, face swap, and neuraltexture), and it achieved 0.96 accuracy on the deepfake method, 0.95 accuracy on face 2 face approach, 0.94 precision on face swap method and 0.76 accuracy on neuraltexture method.","PeriodicalId":7494,"journal":{"name":"Al-Nahrain Journal of Science","volume":"197 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficiency Evaluation of Popular Deepfake Methods Using Convolution Neural Network\",\"authors\":\"Noor K. Alzurf, Mohammed S. Altaei\",\"doi\":\"10.22401/anjs.26.3.07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many deepfake techniques in the early years are spread to create successful deepfake videos (i.e., Face Swap, Deep Fake, etc.). These methods enable anyone to manipulate faces in videos, which can negatively impact society. One way to reduce this problem is the deepfake detection. It has become such a hot topic and the most crucial task in recent years. This paper proposes a deep learning model to detect and evaluate deepfake video methods using convolutional neural networks. The model is evaluated on the FaceForensics++ video dataset that contains four different deepfake ways (deepfake, face 2 face, face swap, and neuraltexture), and it achieved 0.96 accuracy on the deepfake method, 0.95 accuracy on face 2 face approach, 0.94 precision on face swap method and 0.76 accuracy on neuraltexture method.\",\"PeriodicalId\":7494,\"journal\":{\"name\":\"Al-Nahrain Journal of Science\",\"volume\":\"197 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Al-Nahrain Journal of Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22401/anjs.26.3.07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Al-Nahrain Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22401/anjs.26.3.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

早期的许多深度伪造技术被传播以创建成功的深度伪造视频(即Face Swap, Deep Fake等)。这些方法使任何人都可以在视频中操纵人脸,这可能对社会产生负面影响。减少这个问题的一种方法是深度伪造检测。近年来,它已成为一个非常热门的话题和最关键的任务。本文提出了一种深度学习模型,利用卷积神经网络来检测和评估深度假视频方法。在包含四种不同深度伪造方法(deepfake、face 2 face、face swap和neuraltexture)的face取证++视频数据集上对该模型进行了评估,结果表明,deepfake方法的准确率为0.96,face 2 face方法的准确率为0.95,face swap方法的准确率为0.94,neuraltexture方法的准确率为0.76。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficiency Evaluation of Popular Deepfake Methods Using Convolution Neural Network
Many deepfake techniques in the early years are spread to create successful deepfake videos (i.e., Face Swap, Deep Fake, etc.). These methods enable anyone to manipulate faces in videos, which can negatively impact society. One way to reduce this problem is the deepfake detection. It has become such a hot topic and the most crucial task in recent years. This paper proposes a deep learning model to detect and evaluate deepfake video methods using convolutional neural networks. The model is evaluated on the FaceForensics++ video dataset that contains four different deepfake ways (deepfake, face 2 face, face swap, and neuraltexture), and it achieved 0.96 accuracy on the deepfake method, 0.95 accuracy on face 2 face approach, 0.94 precision on face swap method and 0.76 accuracy on neuraltexture method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信