退化Calabi-Yau变型附近Maurer-Cartan方程的几何性质

IF 1.3 1区 数学 Q1 MATHEMATICS
Kwokwai Chan, Naichung Conan Leung, Ziming Nikolas Ma
{"title":"退化Calabi-Yau变型附近Maurer-Cartan方程的几何性质","authors":"Kwokwai Chan, Naichung Conan Leung, Ziming Nikolas Ma","doi":"10.4310/jdg/1695236591","DOIUrl":null,"url":null,"abstract":"Given a degenerate Calabi–Yau variety $X$ equipped with local deformation data, we construct an almost differential graded Batalin–Vilkovisky algebra $PV^{\\ast,\\ast}(X)$, producing a singular version of the extended Kodaira–Spencer differential graded Lie algebra in the Calabi–Yau setting. Assuming Hodge-to-de Rham degeneracy and a local condition that guarantees freeness of the Hodge bundle, we prove a Bogomolov–Tian–Todorov–type unobstructedness theorem for smoothing of singular Calabi–Yau varieties. In particular, this provides a unified proof for the existence of smoothing of both $d$-semistable log smooth Calabi–Yau varieties (as studied by Friedman [$\\href{https://doi.org/10.2307/2006955}{22}$] and Kawamata–Namikawa [$\\href{ https://doi.org/10.1007/BF01231538}{41}$]) and maximally degenerate Calabi–Yau varieties (as studied by Kontsevich–Soibelman $[\\href{ https://link.springer.com/chapter/10.1007/0-8176-4467-9_9}{45}$] and Gross–Siebert [$\\href{ http://doi.org/10.4007/annals.2011.174.3.1}{30}$]). We also demonstrate how our construction yields a logarithmic Frobenius manifold structure on a formal neighborhood of $X$ in the extended moduli space by applying the technique of Barannikov–Kontsevich [$\\href{https://doi.org/10.1155/S1073792898000166}{2}$, $\\href{https://doi.org/10.48550/arXiv.math/9903124}{1}$].","PeriodicalId":15642,"journal":{"name":"Journal of Differential Geometry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Geometry of the Maurer-Cartan equation near degenerate Calabi-Yau varieties\",\"authors\":\"Kwokwai Chan, Naichung Conan Leung, Ziming Nikolas Ma\",\"doi\":\"10.4310/jdg/1695236591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a degenerate Calabi–Yau variety $X$ equipped with local deformation data, we construct an almost differential graded Batalin–Vilkovisky algebra $PV^{\\\\ast,\\\\ast}(X)$, producing a singular version of the extended Kodaira–Spencer differential graded Lie algebra in the Calabi–Yau setting. Assuming Hodge-to-de Rham degeneracy and a local condition that guarantees freeness of the Hodge bundle, we prove a Bogomolov–Tian–Todorov–type unobstructedness theorem for smoothing of singular Calabi–Yau varieties. In particular, this provides a unified proof for the existence of smoothing of both $d$-semistable log smooth Calabi–Yau varieties (as studied by Friedman [$\\\\href{https://doi.org/10.2307/2006955}{22}$] and Kawamata–Namikawa [$\\\\href{ https://doi.org/10.1007/BF01231538}{41}$]) and maximally degenerate Calabi–Yau varieties (as studied by Kontsevich–Soibelman $[\\\\href{ https://link.springer.com/chapter/10.1007/0-8176-4467-9_9}{45}$] and Gross–Siebert [$\\\\href{ http://doi.org/10.4007/annals.2011.174.3.1}{30}$]). We also demonstrate how our construction yields a logarithmic Frobenius manifold structure on a formal neighborhood of $X$ in the extended moduli space by applying the technique of Barannikov–Kontsevich [$\\\\href{https://doi.org/10.1155/S1073792898000166}{2}$, $\\\\href{https://doi.org/10.48550/arXiv.math/9903124}{1}$].\",\"PeriodicalId\":15642,\"journal\":{\"name\":\"Journal of Differential Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/jdg/1695236591\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/jdg/1695236591","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 18

摘要

给定一个退化的Calabi-Yau变量$X$,我们构造了一个几乎微分的梯度Batalin-Vilkovisky代数$PV^{\ast,\ast}(X)$,得到了Calabi-Yau环境下扩展Kodaira-Spencer微分梯度李代数的奇异版本。在假设Hodge-to-de Rham简并性和保证Hodge束自由的局部条件下,证明了奇异Calabi-Yau变异体光滑的bogomolov - tian - todorov型无障碍定理。特别是,这为$d$ -半稳定对数光滑Calabi-Yau品种(如Friedman [$\href{https://doi.org/10.2307/2006955}{22}$]和Kawamata-Namikawa [$\href{ https://doi.org/10.1007/BF01231538}{41}$]研究)和最大退化Calabi-Yau品种(如Kontsevich-Soibelman $[\href{ https://link.springer.com/chapter/10.1007/0-8176-4467-9_9}{45}$]和Gross-Siebert [$\href{ http://doi.org/10.4007/annals.2011.174.3.1}{30}$]研究)的平滑存在提供了统一的证明。我们还演示了我们的构造如何通过应用Barannikov-Kontsevich [$\href{https://doi.org/10.1155/S1073792898000166}{2}$, $\href{https://doi.org/10.48550/arXiv.math/9903124}{1}$]的技术在扩展模空间的形式邻域$X$上产生对数Frobenius流形结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometry of the Maurer-Cartan equation near degenerate Calabi-Yau varieties
Given a degenerate Calabi–Yau variety $X$ equipped with local deformation data, we construct an almost differential graded Batalin–Vilkovisky algebra $PV^{\ast,\ast}(X)$, producing a singular version of the extended Kodaira–Spencer differential graded Lie algebra in the Calabi–Yau setting. Assuming Hodge-to-de Rham degeneracy and a local condition that guarantees freeness of the Hodge bundle, we prove a Bogomolov–Tian–Todorov–type unobstructedness theorem for smoothing of singular Calabi–Yau varieties. In particular, this provides a unified proof for the existence of smoothing of both $d$-semistable log smooth Calabi–Yau varieties (as studied by Friedman [$\href{https://doi.org/10.2307/2006955}{22}$] and Kawamata–Namikawa [$\href{ https://doi.org/10.1007/BF01231538}{41}$]) and maximally degenerate Calabi–Yau varieties (as studied by Kontsevich–Soibelman $[\href{ https://link.springer.com/chapter/10.1007/0-8176-4467-9_9}{45}$] and Gross–Siebert [$\href{ http://doi.org/10.4007/annals.2011.174.3.1}{30}$]). We also demonstrate how our construction yields a logarithmic Frobenius manifold structure on a formal neighborhood of $X$ in the extended moduli space by applying the technique of Barannikov–Kontsevich [$\href{https://doi.org/10.1155/S1073792898000166}{2}$, $\href{https://doi.org/10.48550/arXiv.math/9903124}{1}$].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
24
审稿时长
>12 weeks
期刊介绍: Publishes the latest research in differential geometry and related areas of differential equations, mathematical physics, algebraic geometry, and geometric topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信