数字经济驱动下基于SOM-PNN的财务管理模型设计研究

Q4 Computer Science
Di Fan
{"title":"数字经济驱动下基于SOM-PNN的财务管理模型设计研究","authors":"Di Fan","doi":"10.20532/cit.2022.1005615","DOIUrl":null,"url":null,"abstract":"This study proposes a novel financial risk prediction methodology by harnessing the power of self-organizing mapping (SOM) neural network and probabilistic neural network (PNN). The amalgamation of SOM and PNN's advantageous characteristics is seamlessly integrated into the algorithm posited within this paper. In order to collate and prognosticate data, the SOM network employs a two-dimensional topological framework comprising of two layers of neurons. Subsequently, the PNN model expeditiously furnishes the final classification outcomes by processing the output results obtained from the SOM model. The technique developed atop this composite model offers accelerated computation, effectively mitigates the impact of noisy samples, and significantly augments model accuracy. Finally, the effectiveness of the proposed method was demonstrated through a comprehensive financial risk analysis of listed companies from 2016 to 2020. The experimental results show that the SOM-PNN method has achieved high accuracy in predicting the financial difficulties experienced by traditional companies in the selected company samples, exceeding 85%. Especially when the sample data is insufficient, its accuracy reaches 80%, surpassing other algorithms. Statement: In the modern era, financial institutions use big data to perform background analysis and review, continuously optimize, and adjust, in order to introduce quantitative analysis methods into every link of risk management as far as possible. This allows financial institutions to quickly achieve balance in the game process of risk and income, and achieve Profit maximization in local or even more space.","PeriodicalId":38688,"journal":{"name":"Journal of Computing and Information Technology","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on the Design of Financial Management Model Based on SOM-PNN Driven by Digital Economy\",\"authors\":\"Di Fan\",\"doi\":\"10.20532/cit.2022.1005615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposes a novel financial risk prediction methodology by harnessing the power of self-organizing mapping (SOM) neural network and probabilistic neural network (PNN). The amalgamation of SOM and PNN's advantageous characteristics is seamlessly integrated into the algorithm posited within this paper. In order to collate and prognosticate data, the SOM network employs a two-dimensional topological framework comprising of two layers of neurons. Subsequently, the PNN model expeditiously furnishes the final classification outcomes by processing the output results obtained from the SOM model. The technique developed atop this composite model offers accelerated computation, effectively mitigates the impact of noisy samples, and significantly augments model accuracy. Finally, the effectiveness of the proposed method was demonstrated through a comprehensive financial risk analysis of listed companies from 2016 to 2020. The experimental results show that the SOM-PNN method has achieved high accuracy in predicting the financial difficulties experienced by traditional companies in the selected company samples, exceeding 85%. Especially when the sample data is insufficient, its accuracy reaches 80%, surpassing other algorithms. Statement: In the modern era, financial institutions use big data to perform background analysis and review, continuously optimize, and adjust, in order to introduce quantitative analysis methods into every link of risk management as far as possible. This allows financial institutions to quickly achieve balance in the game process of risk and income, and achieve Profit maximization in local or even more space.\",\"PeriodicalId\":38688,\"journal\":{\"name\":\"Journal of Computing and Information Technology\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computing and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20532/cit.2022.1005615\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computing and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20532/cit.2022.1005615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用自组织映射(SOM)神经网络和概率神经网络(PNN)的力量,提出了一种新的金融风险预测方法。将SOM和PNN的优势特征无缝地融合到本文提出的算法中。为了整理和预测数据,SOM网络采用由两层神经元组成的二维拓扑框架。随后,PNN模型通过处理SOM模型得到的输出结果,快速提供最终分类结果。在此复合模型之上开发的技术提供了加速计算,有效地减轻了噪声样本的影响,并显着提高了模型的准确性。最后,通过对2016 - 2020年上市公司财务风险的综合分析,验证了所提方法的有效性。实验结果表明,在选取的公司样本中,SOM-PNN方法对传统公司财务困难的预测准确率达到了85%以上。特别是在样本数据不足的情况下,其准确率达到80%,超过了其他算法。陈述:在现代时代,金融机构利用大数据进行后台分析和审核,不断优化和调整,尽可能将定量分析方法引入风险管理的每一个环节。这使得金融机构能够在风险与收益的博弈过程中快速实现平衡,在局部甚至更多的空间内实现利润最大化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on the Design of Financial Management Model Based on SOM-PNN Driven by Digital Economy
This study proposes a novel financial risk prediction methodology by harnessing the power of self-organizing mapping (SOM) neural network and probabilistic neural network (PNN). The amalgamation of SOM and PNN's advantageous characteristics is seamlessly integrated into the algorithm posited within this paper. In order to collate and prognosticate data, the SOM network employs a two-dimensional topological framework comprising of two layers of neurons. Subsequently, the PNN model expeditiously furnishes the final classification outcomes by processing the output results obtained from the SOM model. The technique developed atop this composite model offers accelerated computation, effectively mitigates the impact of noisy samples, and significantly augments model accuracy. Finally, the effectiveness of the proposed method was demonstrated through a comprehensive financial risk analysis of listed companies from 2016 to 2020. The experimental results show that the SOM-PNN method has achieved high accuracy in predicting the financial difficulties experienced by traditional companies in the selected company samples, exceeding 85%. Especially when the sample data is insufficient, its accuracy reaches 80%, surpassing other algorithms. Statement: In the modern era, financial institutions use big data to perform background analysis and review, continuously optimize, and adjust, in order to introduce quantitative analysis methods into every link of risk management as far as possible. This allows financial institutions to quickly achieve balance in the game process of risk and income, and achieve Profit maximization in local or even more space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computing and Information Technology
Journal of Computing and Information Technology Computer Science-Computer Science (all)
CiteScore
0.60
自引率
0.00%
发文量
16
审稿时长
26 weeks
期刊介绍: CIT. Journal of Computing and Information Technology is an international peer-reviewed journal covering the area of computing and information technology, i.e. computer science, computer engineering, software engineering, information systems, and information technology. CIT endeavors to publish stimulating accounts of original scientific work, primarily including research papers on both theoretical and practical issues, as well as case studies describing the application and critical evaluation of theory. Surveys and state-of-the-art reports will be considered only exceptionally; proposals for such submissions should be sent to the Editorial Board for scrutiny. Specific areas of interest comprise, but are not restricted to, the following topics: theory of computing, design and analysis of algorithms, numerical and symbolic computing, scientific computing, artificial intelligence, image processing, pattern recognition, computer vision, embedded and real-time systems, operating systems, computer networking, Web technologies, distributed systems, human-computer interaction, technology enhanced learning, multimedia, database systems, data mining, machine learning, knowledge engineering, soft computing systems and network security, computational statistics, computational linguistics, and natural language processing. Special attention is paid to educational, social, legal and managerial aspects of computing and information technology. In this respect CIT fosters the exchange of ideas, experience and knowledge between regions with different technological and cultural background, and in particular developed and developing ones.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信