Steklov特征值问题的最新进展

Bruno Colbois, Alexandre Girouard, Carolyn Gordon, David Sher
{"title":"Steklov特征值问题的最新进展","authors":"Bruno Colbois, Alexandre Girouard, Carolyn Gordon, David Sher","doi":"10.1007/s13163-023-00480-3","DOIUrl":null,"url":null,"abstract":"Abstract The Steklov eigenvalue problem, first introduced over 125 years ago, has seen a surge of interest in the past few decades. This article is a tour of some of the recent developments linking the Steklov eigenvalues and eigenfunctions of compact Riemannian manifolds to the geometry of the manifolds. Topics include isoperimetric-type upper and lower bounds on Steklov eigenvalues (first in the case of surfaces and then in higher dimensions), stability and instability of eigenvalues under deformations of the Riemannian metric, optimisation of eigenvalues and connections to free boundary minimal surfaces in balls, inverse problems and isospectrality, discretisation, and the geometry of eigenfunctions. We begin with background material and motivating examples for readers that are new to the subject. Throughout the tour, we frequently compare and contrast the behavior of the Steklov spectrum with that of the Laplace spectrum. We include many open problems in this rapidly expanding area.","PeriodicalId":129004,"journal":{"name":"Revista Matemática Complutense","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Some recent developments on the Steklov eigenvalue problem\",\"authors\":\"Bruno Colbois, Alexandre Girouard, Carolyn Gordon, David Sher\",\"doi\":\"10.1007/s13163-023-00480-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The Steklov eigenvalue problem, first introduced over 125 years ago, has seen a surge of interest in the past few decades. This article is a tour of some of the recent developments linking the Steklov eigenvalues and eigenfunctions of compact Riemannian manifolds to the geometry of the manifolds. Topics include isoperimetric-type upper and lower bounds on Steklov eigenvalues (first in the case of surfaces and then in higher dimensions), stability and instability of eigenvalues under deformations of the Riemannian metric, optimisation of eigenvalues and connections to free boundary minimal surfaces in balls, inverse problems and isospectrality, discretisation, and the geometry of eigenfunctions. We begin with background material and motivating examples for readers that are new to the subject. Throughout the tour, we frequently compare and contrast the behavior of the Steklov spectrum with that of the Laplace spectrum. We include many open problems in this rapidly expanding area.\",\"PeriodicalId\":129004,\"journal\":{\"name\":\"Revista Matemática Complutense\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Matemática Complutense\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13163-023-00480-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Matemática Complutense","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13163-023-00480-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

Steklov特征值问题在125年前首次提出,在过去的几十年里引起了人们的极大兴趣。这篇文章是一些最近的发展之旅,将紧致黎曼流形的Steklov特征值和特征函数与流形的几何联系起来。主题包括Steklov特征值的等周型上界和下界(首先是曲面的情况,然后是高维的情况),黎曼度量变形下特征值的稳定性和不稳定性,特征值的优化和与球中自由边界最小曲面的连接,逆问题和等谱性,离散化,以及特征函数的几何。我们从背景材料和激励的例子开始,为读者提供新的主题。在整个过程中,我们经常比较和对比斯特克洛夫谱和拉普拉斯谱的行为。我们在这个迅速发展的领域包括了许多悬而未决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Some recent developments on the Steklov eigenvalue problem

Some recent developments on the Steklov eigenvalue problem
Abstract The Steklov eigenvalue problem, first introduced over 125 years ago, has seen a surge of interest in the past few decades. This article is a tour of some of the recent developments linking the Steklov eigenvalues and eigenfunctions of compact Riemannian manifolds to the geometry of the manifolds. Topics include isoperimetric-type upper and lower bounds on Steklov eigenvalues (first in the case of surfaces and then in higher dimensions), stability and instability of eigenvalues under deformations of the Riemannian metric, optimisation of eigenvalues and connections to free boundary minimal surfaces in balls, inverse problems and isospectrality, discretisation, and the geometry of eigenfunctions. We begin with background material and motivating examples for readers that are new to the subject. Throughout the tour, we frequently compare and contrast the behavior of the Steklov spectrum with that of the Laplace spectrum. We include many open problems in this rapidly expanding area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信