{"title":"用迹估计量和有理Krylov方法计算大矩阵的von Neumann熵","authors":"Michele Benzi, Michele Rinelli, Igor Simunec","doi":"10.1007/s00211-023-01368-6","DOIUrl":null,"url":null,"abstract":"Abstract We consider the problem of approximating the von Neumann entropy of a large, sparse, symmetric positive semidefinite matrix A , defined as $${{\\,\\textrm{tr}\\,}}(f(A))$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mrow> <mml:mspace /> <mml:mtext>tr</mml:mtext> <mml:mspace /> </mml:mrow> <mml:mo>(</mml:mo> <mml:mi>f</mml:mi> <mml:mo>(</mml:mo> <mml:mi>A</mml:mi> <mml:mo>)</mml:mo> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> where $$f(x)=-x\\log x$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> <mml:mo>=</mml:mo> <mml:mo>-</mml:mo> <mml:mi>x</mml:mi> <mml:mo>log</mml:mo> <mml:mi>x</mml:mi> </mml:mrow> </mml:math> . After establishing some useful properties of this matrix function, we consider the use of both polynomial and rational Krylov subspace algorithms within two types of approximations methods, namely, randomized trace estimators and probing techniques based on graph colorings. We develop error bounds and heuristics which are employed in the implementation of the algorithms. Numerical experiments on density matrices of different types of networks illustrate the performance of the methods.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Computation of the von Neumann entropy of large matrices via trace estimators and rational Krylov methods\",\"authors\":\"Michele Benzi, Michele Rinelli, Igor Simunec\",\"doi\":\"10.1007/s00211-023-01368-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider the problem of approximating the von Neumann entropy of a large, sparse, symmetric positive semidefinite matrix A , defined as $${{\\\\,\\\\textrm{tr}\\\\,}}(f(A))$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mrow> <mml:mspace /> <mml:mtext>tr</mml:mtext> <mml:mspace /> </mml:mrow> <mml:mo>(</mml:mo> <mml:mi>f</mml:mi> <mml:mo>(</mml:mo> <mml:mi>A</mml:mi> <mml:mo>)</mml:mo> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> where $$f(x)=-x\\\\log x$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> <mml:mo>=</mml:mo> <mml:mo>-</mml:mo> <mml:mi>x</mml:mi> <mml:mo>log</mml:mo> <mml:mi>x</mml:mi> </mml:mrow> </mml:math> . After establishing some useful properties of this matrix function, we consider the use of both polynomial and rational Krylov subspace algorithms within two types of approximations methods, namely, randomized trace estimators and probing techniques based on graph colorings. We develop error bounds and heuristics which are employed in the implementation of the algorithms. Numerical experiments on density matrices of different types of networks illustrate the performance of the methods.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00211-023-01368-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00211-023-01368-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 2
摘要
摘要考虑一个大的、稀疏的、对称的正半定矩阵a的von Neumann熵的近似问题,定义为$${{\,\textrm{tr}\,}}(f(A))$$ tr (f (a)),其中$$f(x)=-x\log x$$ f (x) = - x log x。在建立了该矩阵函数的一些有用性质之后,我们考虑在两种近似方法中使用多项式和有理Krylov子空间算法,即随机迹估计和基于图着色的探测技术。我们开发了用于算法实现的误差界和启发式算法。对不同类型网络的密度矩阵进行了数值实验,验证了该方法的有效性。
Computation of the von Neumann entropy of large matrices via trace estimators and rational Krylov methods
Abstract We consider the problem of approximating the von Neumann entropy of a large, sparse, symmetric positive semidefinite matrix A , defined as $${{\,\textrm{tr}\,}}(f(A))$$ tr(f(A)) where $$f(x)=-x\log x$$ f(x)=-xlogx . After establishing some useful properties of this matrix function, we consider the use of both polynomial and rational Krylov subspace algorithms within two types of approximations methods, namely, randomized trace estimators and probing techniques based on graph colorings. We develop error bounds and heuristics which are employed in the implementation of the algorithms. Numerical experiments on density matrices of different types of networks illustrate the performance of the methods.