用迹估计量和有理Krylov方法计算大矩阵的von Neumann熵

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Michele Benzi, Michele Rinelli, Igor Simunec
{"title":"用迹估计量和有理Krylov方法计算大矩阵的von Neumann熵","authors":"Michele Benzi, Michele Rinelli, Igor Simunec","doi":"10.1007/s00211-023-01368-6","DOIUrl":null,"url":null,"abstract":"Abstract We consider the problem of approximating the von Neumann entropy of a large, sparse, symmetric positive semidefinite matrix A , defined as $${{\\,\\textrm{tr}\\,}}(f(A))$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mrow> <mml:mspace /> <mml:mtext>tr</mml:mtext> <mml:mspace /> </mml:mrow> <mml:mo>(</mml:mo> <mml:mi>f</mml:mi> <mml:mo>(</mml:mo> <mml:mi>A</mml:mi> <mml:mo>)</mml:mo> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> where $$f(x)=-x\\log x$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> <mml:mo>=</mml:mo> <mml:mo>-</mml:mo> <mml:mi>x</mml:mi> <mml:mo>log</mml:mo> <mml:mi>x</mml:mi> </mml:mrow> </mml:math> . After establishing some useful properties of this matrix function, we consider the use of both polynomial and rational Krylov subspace algorithms within two types of approximations methods, namely, randomized trace estimators and probing techniques based on graph colorings. We develop error bounds and heuristics which are employed in the implementation of the algorithms. Numerical experiments on density matrices of different types of networks illustrate the performance of the methods.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Computation of the von Neumann entropy of large matrices via trace estimators and rational Krylov methods\",\"authors\":\"Michele Benzi, Michele Rinelli, Igor Simunec\",\"doi\":\"10.1007/s00211-023-01368-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider the problem of approximating the von Neumann entropy of a large, sparse, symmetric positive semidefinite matrix A , defined as $${{\\\\,\\\\textrm{tr}\\\\,}}(f(A))$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mrow> <mml:mspace /> <mml:mtext>tr</mml:mtext> <mml:mspace /> </mml:mrow> <mml:mo>(</mml:mo> <mml:mi>f</mml:mi> <mml:mo>(</mml:mo> <mml:mi>A</mml:mi> <mml:mo>)</mml:mo> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> where $$f(x)=-x\\\\log x$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> <mml:mo>=</mml:mo> <mml:mo>-</mml:mo> <mml:mi>x</mml:mi> <mml:mo>log</mml:mo> <mml:mi>x</mml:mi> </mml:mrow> </mml:math> . After establishing some useful properties of this matrix function, we consider the use of both polynomial and rational Krylov subspace algorithms within two types of approximations methods, namely, randomized trace estimators and probing techniques based on graph colorings. We develop error bounds and heuristics which are employed in the implementation of the algorithms. Numerical experiments on density matrices of different types of networks illustrate the performance of the methods.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00211-023-01368-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00211-023-01368-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 2

摘要

摘要考虑一个大的、稀疏的、对称的正半定矩阵a的von Neumann熵的近似问题,定义为$${{\,\textrm{tr}\,}}(f(A))$$ tr (f (a)),其中$$f(x)=-x\log x$$ f (x) = - x log x。在建立了该矩阵函数的一些有用性质之后,我们考虑在两种近似方法中使用多项式和有理Krylov子空间算法,即随机迹估计和基于图着色的探测技术。我们开发了用于算法实现的误差界和启发式算法。对不同类型网络的密度矩阵进行了数值实验,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Computation of the von Neumann entropy of large matrices via trace estimators and rational Krylov methods

Computation of the von Neumann entropy of large matrices via trace estimators and rational Krylov methods
Abstract We consider the problem of approximating the von Neumann entropy of a large, sparse, symmetric positive semidefinite matrix A , defined as $${{\,\textrm{tr}\,}}(f(A))$$ tr ( f ( A ) ) where $$f(x)=-x\log x$$ f ( x ) = - x log x . After establishing some useful properties of this matrix function, we consider the use of both polynomial and rational Krylov subspace algorithms within two types of approximations methods, namely, randomized trace estimators and probing techniques based on graph colorings. We develop error bounds and heuristics which are employed in the implementation of the algorithms. Numerical experiments on density matrices of different types of networks illustrate the performance of the methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信