M. Sliem, N. Laycock, A. Hefny, P. Shenai, A. M. Abdullah, S. Pedrazzini, M.P. Ryan
{"title":"磷酸三钠对蒸汽发生器氯化物驱动下沉积腐蚀的影响","authors":"M. Sliem, N. Laycock, A. Hefny, P. Shenai, A. M. Abdullah, S. Pedrazzini, M.P. Ryan","doi":"10.5006/4421","DOIUrl":null,"url":null,"abstract":"Carbon or low alloy steel tubes in steam generators (or boilers) are potentially vulnerable to Under Deposit Corrosion (UDC), arising from the formation of porous magnetite deposits on the waterside heat transfer surfaces. Beneath these deposits, ‘wick-boiling’ causes concentration of contaminants (such as chlorides), which eventually leads to rapid corrosion. In this work, the corrosion of carbon steel has been investigated in hot acid chloride solutions that simulate the concentrated local environments formed during UDC. Tri-Sodium Phosphate (TSP) is sometimes dosed into boilers for pH control. This work has shown that TSP addition such that the phosphate concentration equals the chloride concentration dramatically reduces the corrosion rate in these simulated environments from > 20 to < 0.1 mm/yr. Additionally, a model of wick-boiling beneath deposits has been used to analyze the concentration of chlorides and phosphates during the initiation stages of UDC, suggesting that dosing of only 100 ppb of TSP into bulk boiler water should be sufficient to increase the critical deposit thickness (required for UDC) by > 100 μm across a wide range of operational scenarios.","PeriodicalId":10717,"journal":{"name":"Corrosion","volume":"234 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Impact of Trisodium Phosphate on Chloride-Driven Under Deposit Corrosion in Steam Generators\",\"authors\":\"M. Sliem, N. Laycock, A. Hefny, P. Shenai, A. M. Abdullah, S. Pedrazzini, M.P. Ryan\",\"doi\":\"10.5006/4421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carbon or low alloy steel tubes in steam generators (or boilers) are potentially vulnerable to Under Deposit Corrosion (UDC), arising from the formation of porous magnetite deposits on the waterside heat transfer surfaces. Beneath these deposits, ‘wick-boiling’ causes concentration of contaminants (such as chlorides), which eventually leads to rapid corrosion. In this work, the corrosion of carbon steel has been investigated in hot acid chloride solutions that simulate the concentrated local environments formed during UDC. Tri-Sodium Phosphate (TSP) is sometimes dosed into boilers for pH control. This work has shown that TSP addition such that the phosphate concentration equals the chloride concentration dramatically reduces the corrosion rate in these simulated environments from > 20 to < 0.1 mm/yr. Additionally, a model of wick-boiling beneath deposits has been used to analyze the concentration of chlorides and phosphates during the initiation stages of UDC, suggesting that dosing of only 100 ppb of TSP into bulk boiler water should be sufficient to increase the critical deposit thickness (required for UDC) by > 100 μm across a wide range of operational scenarios.\",\"PeriodicalId\":10717,\"journal\":{\"name\":\"Corrosion\",\"volume\":\"234 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Corrosion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5006/4421\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5006/4421","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
The Impact of Trisodium Phosphate on Chloride-Driven Under Deposit Corrosion in Steam Generators
Carbon or low alloy steel tubes in steam generators (or boilers) are potentially vulnerable to Under Deposit Corrosion (UDC), arising from the formation of porous magnetite deposits on the waterside heat transfer surfaces. Beneath these deposits, ‘wick-boiling’ causes concentration of contaminants (such as chlorides), which eventually leads to rapid corrosion. In this work, the corrosion of carbon steel has been investigated in hot acid chloride solutions that simulate the concentrated local environments formed during UDC. Tri-Sodium Phosphate (TSP) is sometimes dosed into boilers for pH control. This work has shown that TSP addition such that the phosphate concentration equals the chloride concentration dramatically reduces the corrosion rate in these simulated environments from > 20 to < 0.1 mm/yr. Additionally, a model of wick-boiling beneath deposits has been used to analyze the concentration of chlorides and phosphates during the initiation stages of UDC, suggesting that dosing of only 100 ppb of TSP into bulk boiler water should be sufficient to increase the critical deposit thickness (required for UDC) by > 100 μm across a wide range of operational scenarios.
期刊介绍:
CORROSION is the premier research journal featuring peer-reviewed technical articles from the world’s top researchers and provides a permanent record of progress in the science and technology of corrosion prevention and control. The scope of the journal includes the latest developments in areas of corrosion metallurgy, mechanisms, predictors, cracking (sulfide stress, stress corrosion, hydrogen-induced), passivation, and CO2 corrosion.
70+ years and over 7,100 peer-reviewed articles with advances in corrosion science and engineering have been published in CORROSION. The journal publishes seven article types – original articles, invited critical reviews, technical notes, corrosion communications fast-tracked for rapid publication, special research topic issues, research letters of yearly annual conference student poster sessions, and scientific investigations of field corrosion processes. CORROSION, the Journal of Science and Engineering, serves as an important communication platform for academics, researchers, technical libraries, and universities.
Articles considered for CORROSION should have significant permanent value and should accomplish at least one of the following objectives:
• Contribute awareness of corrosion phenomena,
• Advance understanding of fundamental process, and/or
• Further the knowledge of techniques and practices used to reduce corrosion.