{"title":"使用支持向量机(SVM)和 K 近邻(KNN)对病态和健康可可果实图像分类器进行性能比较","authors":"Yohanes Balawuri Blikon","doi":"10.24176/simet.v14i1.9012","DOIUrl":null,"url":null,"abstract":"Kakao merupakan salah satu hasil bumi dibidang perkebunan. Perkebunan kakao dengan hasilnya yaitu biji kakao dapat diolah menjadi bahan dasar tepung atau coklat. Keberadaan perkebunan ini tentu perlu mendapat dukungan teknologi atau kecerdasan buatan untuk membantu proses pensortiran secara modern jika dilakukan penerapan conveyer belt atau model pemetikan otomatis masa depan menggunakan drone pemetik buah. Proses pensortiran yang dimaksud yaitu menggunakan model pengklasifikasian untuk mendeteksi dataset buah kakao sakit dan sehat. Penelitian ini membandingkan model klasifikasi Support Vector Machine (SVM) dan k-Nearest Neighbors (KNN) dengan tujuan untuk mengetahui kinerja pengklasifikasi yang lebih persisi. Dari hasi ujicoba yang dilakukan performa dari model klasifikasi Support Vector Machine (SVM) dengan kernel RBF dan cross validation 2 mendapatkan hasil prediksi yang lebih tinggi yaitu sebesar 82,5% sedangkan model klasifikasi k-Nearest Neighbors (KNN) dengan number of neighbors 5, metric euclidean dan weight distance tingkat akurasinya sebesar 82,3%. Kata kunci: support vector machine (SVM); k-nearest neighbors (KNN); dataset buah kakao; performa klasifikasi.","PeriodicalId":31717,"journal":{"name":"Simetris Jurnal Teknik Mesin Elektro dan Ilmu Komputer","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PERBANDINGA KINERJA PENGKLASIFIKASI CITRA BUAH KAKAO SAKIT DAN SEHAT MENGGUNAKAN SUPPORT VECTOR MACHINE (SVM) DAN K-NEAREST NEIGHBORS (KNN)\",\"authors\":\"Yohanes Balawuri Blikon\",\"doi\":\"10.24176/simet.v14i1.9012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kakao merupakan salah satu hasil bumi dibidang perkebunan. Perkebunan kakao dengan hasilnya yaitu biji kakao dapat diolah menjadi bahan dasar tepung atau coklat. Keberadaan perkebunan ini tentu perlu mendapat dukungan teknologi atau kecerdasan buatan untuk membantu proses pensortiran secara modern jika dilakukan penerapan conveyer belt atau model pemetikan otomatis masa depan menggunakan drone pemetik buah. Proses pensortiran yang dimaksud yaitu menggunakan model pengklasifikasian untuk mendeteksi dataset buah kakao sakit dan sehat. Penelitian ini membandingkan model klasifikasi Support Vector Machine (SVM) dan k-Nearest Neighbors (KNN) dengan tujuan untuk mengetahui kinerja pengklasifikasi yang lebih persisi. Dari hasi ujicoba yang dilakukan performa dari model klasifikasi Support Vector Machine (SVM) dengan kernel RBF dan cross validation 2 mendapatkan hasil prediksi yang lebih tinggi yaitu sebesar 82,5% sedangkan model klasifikasi k-Nearest Neighbors (KNN) dengan number of neighbors 5, metric euclidean dan weight distance tingkat akurasinya sebesar 82,3%. Kata kunci: support vector machine (SVM); k-nearest neighbors (KNN); dataset buah kakao; performa klasifikasi.\",\"PeriodicalId\":31717,\"journal\":{\"name\":\"Simetris Jurnal Teknik Mesin Elektro dan Ilmu Komputer\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Simetris Jurnal Teknik Mesin Elektro dan Ilmu Komputer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24176/simet.v14i1.9012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simetris Jurnal Teknik Mesin Elektro dan Ilmu Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24176/simet.v14i1.9012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PERBANDINGA KINERJA PENGKLASIFIKASI CITRA BUAH KAKAO SAKIT DAN SEHAT MENGGUNAKAN SUPPORT VECTOR MACHINE (SVM) DAN K-NEAREST NEIGHBORS (KNN)
Kakao merupakan salah satu hasil bumi dibidang perkebunan. Perkebunan kakao dengan hasilnya yaitu biji kakao dapat diolah menjadi bahan dasar tepung atau coklat. Keberadaan perkebunan ini tentu perlu mendapat dukungan teknologi atau kecerdasan buatan untuk membantu proses pensortiran secara modern jika dilakukan penerapan conveyer belt atau model pemetikan otomatis masa depan menggunakan drone pemetik buah. Proses pensortiran yang dimaksud yaitu menggunakan model pengklasifikasian untuk mendeteksi dataset buah kakao sakit dan sehat. Penelitian ini membandingkan model klasifikasi Support Vector Machine (SVM) dan k-Nearest Neighbors (KNN) dengan tujuan untuk mengetahui kinerja pengklasifikasi yang lebih persisi. Dari hasi ujicoba yang dilakukan performa dari model klasifikasi Support Vector Machine (SVM) dengan kernel RBF dan cross validation 2 mendapatkan hasil prediksi yang lebih tinggi yaitu sebesar 82,5% sedangkan model klasifikasi k-Nearest Neighbors (KNN) dengan number of neighbors 5, metric euclidean dan weight distance tingkat akurasinya sebesar 82,3%. Kata kunci: support vector machine (SVM); k-nearest neighbors (KNN); dataset buah kakao; performa klasifikasi.