文档相似度算法的比较

Nicholas Gahman, Vinayak Elangovan
{"title":"文档相似度算法的比较","authors":"Nicholas Gahman, Vinayak Elangovan","doi":"10.5121/ijaia.2023.14204","DOIUrl":null,"url":null,"abstract":"Document similarity is an important part of Natural Language Processing and is most commonly used forplagiarism-detection and text summarization. Thus, finding the overall most effective document similarity algorithm could have a major positive impact on the field of Natural Language Processing. This report setsout to examine the numerous document similarity algorithms, and determine which ones are the mostuseful. It addresses the most effective document similarity algorithm by categorizing them into 3 types ofdocument similarity algorithms: statistical algorithms, neural networks, and corpus/knowledge-basedalgorithms. The most effective algorithms in each category are also compared in our work using a series of benchmark datasets and evaluations that test every possible area that each algorithm could be used in.","PeriodicalId":93188,"journal":{"name":"International journal of artificial intelligence & applications","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comparison of Document Similarity Algorithms\",\"authors\":\"Nicholas Gahman, Vinayak Elangovan\",\"doi\":\"10.5121/ijaia.2023.14204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Document similarity is an important part of Natural Language Processing and is most commonly used forplagiarism-detection and text summarization. Thus, finding the overall most effective document similarity algorithm could have a major positive impact on the field of Natural Language Processing. This report setsout to examine the numerous document similarity algorithms, and determine which ones are the mostuseful. It addresses the most effective document similarity algorithm by categorizing them into 3 types ofdocument similarity algorithms: statistical algorithms, neural networks, and corpus/knowledge-basedalgorithms. The most effective algorithms in each category are also compared in our work using a series of benchmark datasets and evaluations that test every possible area that each algorithm could be used in.\",\"PeriodicalId\":93188,\"journal\":{\"name\":\"International journal of artificial intelligence & applications\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of artificial intelligence & applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/ijaia.2023.14204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of artificial intelligence & applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/ijaia.2023.14204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

文档相似度是自然语言处理的重要组成部分,最常用于剽窃检测和文本摘要。因此,找到总体上最有效的文档相似度算法可能对自然语言处理领域产生重大的积极影响。本报告旨在检查众多文档相似度算法,并确定哪些是最有用的。它解决了最有效的文档相似度算法,将它们分为三种类型的文档相似度算法:统计算法、神经网络和基于语料库/知识的算法。在我们的工作中,还使用一系列基准数据集和评估来比较每个类别中最有效的算法,这些基准数据集和评估测试了每个算法可以使用的每个可能领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Comparison of Document Similarity Algorithms
Document similarity is an important part of Natural Language Processing and is most commonly used forplagiarism-detection and text summarization. Thus, finding the overall most effective document similarity algorithm could have a major positive impact on the field of Natural Language Processing. This report setsout to examine the numerous document similarity algorithms, and determine which ones are the mostuseful. It addresses the most effective document similarity algorithm by categorizing them into 3 types ofdocument similarity algorithms: statistical algorithms, neural networks, and corpus/knowledge-basedalgorithms. The most effective algorithms in each category are also compared in our work using a series of benchmark datasets and evaluations that test every possible area that each algorithm could be used in.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信