自动图像处理,通过深度学习识别covid后的情况

IF 1.2 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
Arón Hernández Trinidad, Teodoro Córdova Fraga, Luis Carlos Padierna García, José Luis López Hernández, Blanca Olivia Murillo Ortiz, Rafael Guzman-Cabrera
{"title":"自动图像处理,通过深度学习识别covid后的情况","authors":"Arón Hernández Trinidad, Teodoro Córdova Fraga, Luis Carlos Padierna García, José Luis López Hernández, Blanca Olivia Murillo Ortiz, Rafael Guzman-Cabrera","doi":"10.31349/revmexfis.69.061101","DOIUrl":null,"url":null,"abstract":"In the present research, a supervised learning classification methodology is proposed to identify post-COVID conditions. Image processing and deep learning methods were employed to analyze a data set provided by the High Specialty Medical Unit No.1 of the Mexican Institute of Social Security (T1-IMSS) of Leon, Guanajuato, Mexico, of Mexican patients infected with COVID-19. The dataset is classified into post-COVID findings and no post-COVID findings. A deep neural network of 50 hidden layers is used to extract regions of interest, with properties that can potentially be related to computer-aided medical diagnosis. Different patterns were found in the post-COVID computed tomography scans: pulmonary fibrosis, ground glass pattern, etc. The efficiency of the proposed method was 97% precision using the cross-validation classification scenario. This result allows to provide an auxiliary tool in medical diagnosis, through computer-aided diagnosis. This model provides an automatic and objective estimation of post-COVID conditions of Mexican patients, facilitating the expert interpretation during the COVID-19 pandemic.","PeriodicalId":21538,"journal":{"name":"Revista Mexicana De Fisica","volume":"79 1-2","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic image processing to identify post-COVID conditions by using deep learning\",\"authors\":\"Arón Hernández Trinidad, Teodoro Córdova Fraga, Luis Carlos Padierna García, José Luis López Hernández, Blanca Olivia Murillo Ortiz, Rafael Guzman-Cabrera\",\"doi\":\"10.31349/revmexfis.69.061101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present research, a supervised learning classification methodology is proposed to identify post-COVID conditions. Image processing and deep learning methods were employed to analyze a data set provided by the High Specialty Medical Unit No.1 of the Mexican Institute of Social Security (T1-IMSS) of Leon, Guanajuato, Mexico, of Mexican patients infected with COVID-19. The dataset is classified into post-COVID findings and no post-COVID findings. A deep neural network of 50 hidden layers is used to extract regions of interest, with properties that can potentially be related to computer-aided medical diagnosis. Different patterns were found in the post-COVID computed tomography scans: pulmonary fibrosis, ground glass pattern, etc. The efficiency of the proposed method was 97% precision using the cross-validation classification scenario. This result allows to provide an auxiliary tool in medical diagnosis, through computer-aided diagnosis. This model provides an automatic and objective estimation of post-COVID conditions of Mexican patients, facilitating the expert interpretation during the COVID-19 pandemic.\",\"PeriodicalId\":21538,\"journal\":{\"name\":\"Revista Mexicana De Fisica\",\"volume\":\"79 1-2\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Mexicana De Fisica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31349/revmexfis.69.061101\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Mexicana De Fisica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31349/revmexfis.69.061101","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,提出了一种监督学习分类方法来识别后covid条件。采用图像处理和深度学习方法对墨西哥瓜纳华托州利昂市墨西哥社会保障研究所第一高级专科医疗单位(T1-IMSS)提供的墨西哥COVID-19感染患者数据集进行分析。该数据集分为covid后发现和无covid后发现。一个由50个隐藏层组成的深度神经网络被用来提取感兴趣的区域,这些区域的属性可能与计算机辅助医疗诊断有关。新冠肺炎后计算机断层扫描发现不同的模式:肺纤维化,磨玻璃模式等。在交叉验证分类场景下,该方法的准确率为97%。通过计算机辅助诊断,为医学诊断提供了一种辅助工具。该模型提供了对墨西哥患者后疫情情况的自动客观估计,便于专家在COVID-19大流行期间进行解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic image processing to identify post-COVID conditions by using deep learning
In the present research, a supervised learning classification methodology is proposed to identify post-COVID conditions. Image processing and deep learning methods were employed to analyze a data set provided by the High Specialty Medical Unit No.1 of the Mexican Institute of Social Security (T1-IMSS) of Leon, Guanajuato, Mexico, of Mexican patients infected with COVID-19. The dataset is classified into post-COVID findings and no post-COVID findings. A deep neural network of 50 hidden layers is used to extract regions of interest, with properties that can potentially be related to computer-aided medical diagnosis. Different patterns were found in the post-COVID computed tomography scans: pulmonary fibrosis, ground glass pattern, etc. The efficiency of the proposed method was 97% precision using the cross-validation classification scenario. This result allows to provide an auxiliary tool in medical diagnosis, through computer-aided diagnosis. This model provides an automatic and objective estimation of post-COVID conditions of Mexican patients, facilitating the expert interpretation during the COVID-19 pandemic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Revista Mexicana De Fisica
Revista Mexicana De Fisica 物理-物理:综合
CiteScore
2.20
自引率
11.80%
发文量
87
审稿时长
4-8 weeks
期刊介绍: Durante los últimos años, los responsables de la Revista Mexicana de Física, la Revista Mexicana de Física E y la Revista Mexicana de Física S, hemos realizado esfuerzos para fortalecer la presencia de estas publicaciones en nuestra página Web ( http://rmf.smf.mx).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信