{"title":"太赫兹石墨烯光学纳米贴片天线","authors":"Bouchra Moulfi, Souheyla Ferouani, Djalal Ziani Kerarti","doi":"10.31349/revmexfis.69.061302","DOIUrl":null,"url":null,"abstract":"Nano optical crescent patch antenna for Terahertz applications using Graphene is designed in this paper. The antenna is designed at 7.28 THZ with several substrates material as PTFE (²r = 2.1), polymide (²r = 3.5), RO3003 (²r = 3), RO4003 (²r = 3.4) and Arlon AD (²r = 2.5). Graphene is the material patch used with different properties such as chemical potential µc = 0.2 eV, relaxation time τ = 1 ps and thickness of 60 nm to achieve a high gain and bandwidth. We obtained a very good performance of crescent antenna at 7.28 THZ with −37.962 dB, 7.124 dBi, 1.767 THZ of return loss, gain and bandwidth respectively which is very satisfactory for terahertz transmission between [0.1-10] THZ.","PeriodicalId":21538,"journal":{"name":"Revista Mexicana De Fisica","volume":"73 4","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optical nano patch antenna for terahertz applications with graphene\",\"authors\":\"Bouchra Moulfi, Souheyla Ferouani, Djalal Ziani Kerarti\",\"doi\":\"10.31349/revmexfis.69.061302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nano optical crescent patch antenna for Terahertz applications using Graphene is designed in this paper. The antenna is designed at 7.28 THZ with several substrates material as PTFE (²r = 2.1), polymide (²r = 3.5), RO3003 (²r = 3), RO4003 (²r = 3.4) and Arlon AD (²r = 2.5). Graphene is the material patch used with different properties such as chemical potential µc = 0.2 eV, relaxation time τ = 1 ps and thickness of 60 nm to achieve a high gain and bandwidth. We obtained a very good performance of crescent antenna at 7.28 THZ with −37.962 dB, 7.124 dBi, 1.767 THZ of return loss, gain and bandwidth respectively which is very satisfactory for terahertz transmission between [0.1-10] THZ.\",\"PeriodicalId\":21538,\"journal\":{\"name\":\"Revista Mexicana De Fisica\",\"volume\":\"73 4\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Mexicana De Fisica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31349/revmexfis.69.061302\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Mexicana De Fisica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31349/revmexfis.69.061302","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Optical nano patch antenna for terahertz applications with graphene
Nano optical crescent patch antenna for Terahertz applications using Graphene is designed in this paper. The antenna is designed at 7.28 THZ with several substrates material as PTFE (²r = 2.1), polymide (²r = 3.5), RO3003 (²r = 3), RO4003 (²r = 3.4) and Arlon AD (²r = 2.5). Graphene is the material patch used with different properties such as chemical potential µc = 0.2 eV, relaxation time τ = 1 ps and thickness of 60 nm to achieve a high gain and bandwidth. We obtained a very good performance of crescent antenna at 7.28 THZ with −37.962 dB, 7.124 dBi, 1.767 THZ of return loss, gain and bandwidth respectively which is very satisfactory for terahertz transmission between [0.1-10] THZ.
期刊介绍:
Durante los últimos años, los responsables de la Revista Mexicana de Física, la Revista Mexicana de Física E y la Revista Mexicana de Física S, hemos realizado esfuerzos para fortalecer la presencia de estas publicaciones en nuestra página Web ( http://rmf.smf.mx).