Yu Ogura, Yuki Tsuchiya, Sena Hoshino, Tatsuya Yokoi, Katsuyuki Matsunaga
{"title":"MgO单晶的光塑性效应","authors":"Yu Ogura, Yuki Tsuchiya, Sena Hoshino, Tatsuya Yokoi, Katsuyuki Matsunaga","doi":"10.2109/jcersj2.23060","DOIUrl":null,"url":null,"abstract":"The photoplastic effect, phenomena that flow stress and/or hardness change by light illuminations, has been known mainly in II–VI compound semiconductors. In this study, it was revealed for the first time that magnesium oxide (MgO) single crystals exhibit increase in flow stress by light illumination, namely, the positive photoplastic effect. Scanning transmission electron microscope (STEM) observations demonstrated that the plastic deformation of MgO is realized by generation of glide dislocations on the slip system of {110}〈110〉. Therefore, the observed positive photoplastic effect of MgO is likely due to interactions of the glide dislocations and photo-excited carriers. According to the theoretical calculations, individual dislocations in MgO had a specific band structure that differs from the bulk. This also indicates possible interactions between dislocations and carriers. It is expected that light illumination can reduce dislocation mobility in MgO, leading to the increase in flow stress under light illuminations.","PeriodicalId":17246,"journal":{"name":"Journal of the Ceramic Society of Japan","volume":"8 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photoplastic effect in MgO single crystals\",\"authors\":\"Yu Ogura, Yuki Tsuchiya, Sena Hoshino, Tatsuya Yokoi, Katsuyuki Matsunaga\",\"doi\":\"10.2109/jcersj2.23060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The photoplastic effect, phenomena that flow stress and/or hardness change by light illuminations, has been known mainly in II–VI compound semiconductors. In this study, it was revealed for the first time that magnesium oxide (MgO) single crystals exhibit increase in flow stress by light illumination, namely, the positive photoplastic effect. Scanning transmission electron microscope (STEM) observations demonstrated that the plastic deformation of MgO is realized by generation of glide dislocations on the slip system of {110}〈110〉. Therefore, the observed positive photoplastic effect of MgO is likely due to interactions of the glide dislocations and photo-excited carriers. According to the theoretical calculations, individual dislocations in MgO had a specific band structure that differs from the bulk. This also indicates possible interactions between dislocations and carriers. It is expected that light illumination can reduce dislocation mobility in MgO, leading to the increase in flow stress under light illuminations.\",\"PeriodicalId\":17246,\"journal\":{\"name\":\"Journal of the Ceramic Society of Japan\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Ceramic Society of Japan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2109/jcersj2.23060\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Ceramic Society of Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2109/jcersj2.23060","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
The photoplastic effect, phenomena that flow stress and/or hardness change by light illuminations, has been known mainly in II–VI compound semiconductors. In this study, it was revealed for the first time that magnesium oxide (MgO) single crystals exhibit increase in flow stress by light illumination, namely, the positive photoplastic effect. Scanning transmission electron microscope (STEM) observations demonstrated that the plastic deformation of MgO is realized by generation of glide dislocations on the slip system of {110}〈110〉. Therefore, the observed positive photoplastic effect of MgO is likely due to interactions of the glide dislocations and photo-excited carriers. According to the theoretical calculations, individual dislocations in MgO had a specific band structure that differs from the bulk. This also indicates possible interactions between dislocations and carriers. It is expected that light illumination can reduce dislocation mobility in MgO, leading to the increase in flow stress under light illuminations.
期刊介绍:
The Journal of the Ceramic Society of Japan (JCS-Japan) publishes original experimental and theoretical researches and reviews on ceramic science, ceramic materials, and related fields, including composites and hybrids. JCS-Japan welcomes manuscripts on both fundamental and applied researches.