基于多项式机器学习势的二元Al-Cu合金体系晶体结构预测

IF 1.3 4区 材料科学 Q3 MATERIALS SCIENCE, CERAMICS
Hayato Wakai, Atsuto Seko, Isao Tanaka
{"title":"基于多项式机器学习势的二元Al-Cu合金体系晶体结构预测","authors":"Hayato Wakai, Atsuto Seko, Isao Tanaka","doi":"10.2109/jcersj2.23053","DOIUrl":null,"url":null,"abstract":"Machine learning potentials (MLPs) are attracting much attention as powerful tools to accurately and efficiently perform atomistic simulations and crystal structure predictions. In this study, we develop a polynomial MLP for the Al–Cu system applicable to the robust global structure search and metastable structure enumeration. We then apply a combination of a global optimization method and the polynomial MLP to the Al–Cu alloy system. As a result of approximately 1010 times energy computations, the globally-stable and metastable structures are enumerated in the Al–Cu system.","PeriodicalId":17246,"journal":{"name":"Journal of the Ceramic Society of Japan","volume":"48 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient global crystal structure prediction using polynomial machine learning potential in the binary Al–Cu alloy system\",\"authors\":\"Hayato Wakai, Atsuto Seko, Isao Tanaka\",\"doi\":\"10.2109/jcersj2.23053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning potentials (MLPs) are attracting much attention as powerful tools to accurately and efficiently perform atomistic simulations and crystal structure predictions. In this study, we develop a polynomial MLP for the Al–Cu system applicable to the robust global structure search and metastable structure enumeration. We then apply a combination of a global optimization method and the polynomial MLP to the Al–Cu alloy system. As a result of approximately 1010 times energy computations, the globally-stable and metastable structures are enumerated in the Al–Cu system.\",\"PeriodicalId\":17246,\"journal\":{\"name\":\"Journal of the Ceramic Society of Japan\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Ceramic Society of Japan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2109/jcersj2.23053\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Ceramic Society of Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2109/jcersj2.23053","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

机器学习潜力(mlp)作为准确、高效地进行原子模拟和晶体结构预测的强大工具,正引起人们的广泛关注。在本研究中,我们开发了一个适用于Al-Cu体系鲁棒全局结构搜索和亚稳结构枚举的多项式MLP。然后,我们将全局优化方法与多项式MLP相结合应用于Al-Cu合金体系。通过约1010倍的能量计算,得到了Al-Cu体系的全局稳定和亚稳结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient global crystal structure prediction using polynomial machine learning potential in the binary Al–Cu alloy system
Machine learning potentials (MLPs) are attracting much attention as powerful tools to accurately and efficiently perform atomistic simulations and crystal structure predictions. In this study, we develop a polynomial MLP for the Al–Cu system applicable to the robust global structure search and metastable structure enumeration. We then apply a combination of a global optimization method and the polynomial MLP to the Al–Cu alloy system. As a result of approximately 1010 times energy computations, the globally-stable and metastable structures are enumerated in the Al–Cu system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the Ceramic Society of Japan
Journal of the Ceramic Society of Japan 工程技术-材料科学:硅酸盐
CiteScore
2.10
自引率
18.20%
发文量
170
审稿时长
2 months
期刊介绍: The Journal of the Ceramic Society of Japan (JCS-Japan) publishes original experimental and theoretical researches and reviews on ceramic science, ceramic materials, and related fields, including composites and hybrids. JCS-Japan welcomes manuscripts on both fundamental and applied researches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信