SnS中掺杂控制载流子的研究进展

IF 1.3 4区 材料科学 Q3 MATERIALS SCIENCE, CERAMICS
Issei Suzuki
{"title":"SnS中掺杂控制载流子的研究进展","authors":"Issei Suzuki","doi":"10.2109/jcersj2.23098","DOIUrl":null,"url":null,"abstract":"Tin sulfide (SnS) is a semiconductor composed of abundant and non-toxic elements and has potential applications as a light absorbing layer in thin-film solar cells and a thermoelectric material. While controlling the carrier type (n- or p-type conduction) and carrier concentration of SnS by impurity doping has been intensively studied both experimentally and theoretically since 2010s, no comprehensive discussion of them has been made. This review is motivated to provide researchers with an overview of SnS doping techniques including following topics. The importance and effects of carrier control on the performance of SnS-based photovoltaics and thermoelectric devices are at first discussed. Subsequently, the electrical property of the undoped SnS resulting from its intrinsic defects are summarized. Also, the characteristics of p- and n-type dopings to SnS with various dopants are summarized and compared with the doping systems to other IV–VI group semiconductors, particularly SnSe. The final section presents a perspective on the current status of research in SnS carrier control and potential future research directions.","PeriodicalId":17246,"journal":{"name":"Journal of the Ceramic Society of Japan","volume":"149 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carrier control in SnS by doping: A review\",\"authors\":\"Issei Suzuki\",\"doi\":\"10.2109/jcersj2.23098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tin sulfide (SnS) is a semiconductor composed of abundant and non-toxic elements and has potential applications as a light absorbing layer in thin-film solar cells and a thermoelectric material. While controlling the carrier type (n- or p-type conduction) and carrier concentration of SnS by impurity doping has been intensively studied both experimentally and theoretically since 2010s, no comprehensive discussion of them has been made. This review is motivated to provide researchers with an overview of SnS doping techniques including following topics. The importance and effects of carrier control on the performance of SnS-based photovoltaics and thermoelectric devices are at first discussed. Subsequently, the electrical property of the undoped SnS resulting from its intrinsic defects are summarized. Also, the characteristics of p- and n-type dopings to SnS with various dopants are summarized and compared with the doping systems to other IV–VI group semiconductors, particularly SnSe. The final section presents a perspective on the current status of research in SnS carrier control and potential future research directions.\",\"PeriodicalId\":17246,\"journal\":{\"name\":\"Journal of the Ceramic Society of Japan\",\"volume\":\"149 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Ceramic Society of Japan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2109/jcersj2.23098\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Ceramic Society of Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2109/jcersj2.23098","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

硫化锡是一种由丰富无毒元素组成的半导体材料,作为薄膜太阳能电池的吸光层和热电材料具有潜在的应用前景。自2010年代以来,通过杂质掺杂控制SnS的载流子类型(n型或p型导电)和载流子浓度的研究在实验和理论上都得到了深入的研究,但尚未对其进行全面的讨论。本综述旨在为研究人员提供SnS掺杂技术的概述,包括以下主题。首先讨论了载流子控制对氮化硅基光伏和热电器件性能的重要性和影响。随后,总结了由于其固有缺陷而导致的未掺杂SnS的电学性质。总结了不同掺杂剂对SnS掺杂的p型和n型的特性,并与其他IV-VI族半导体,特别是SnSe的掺杂体系进行了比较。最后对SnS载体控制的研究现状和未来可能的研究方向进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Carrier control in SnS by doping: A review
Tin sulfide (SnS) is a semiconductor composed of abundant and non-toxic elements and has potential applications as a light absorbing layer in thin-film solar cells and a thermoelectric material. While controlling the carrier type (n- or p-type conduction) and carrier concentration of SnS by impurity doping has been intensively studied both experimentally and theoretically since 2010s, no comprehensive discussion of them has been made. This review is motivated to provide researchers with an overview of SnS doping techniques including following topics. The importance and effects of carrier control on the performance of SnS-based photovoltaics and thermoelectric devices are at first discussed. Subsequently, the electrical property of the undoped SnS resulting from its intrinsic defects are summarized. Also, the characteristics of p- and n-type dopings to SnS with various dopants are summarized and compared with the doping systems to other IV–VI group semiconductors, particularly SnSe. The final section presents a perspective on the current status of research in SnS carrier control and potential future research directions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the Ceramic Society of Japan
Journal of the Ceramic Society of Japan 工程技术-材料科学:硅酸盐
CiteScore
2.10
自引率
18.20%
发文量
170
审稿时长
2 months
期刊介绍: The Journal of the Ceramic Society of Japan (JCS-Japan) publishes original experimental and theoretical researches and reviews on ceramic science, ceramic materials, and related fields, including composites and hybrids. JCS-Japan welcomes manuscripts on both fundamental and applied researches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信