MAXI J1820+070黑洞双星低频准周期振荡的相位分辨观测

IF 4.8 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Qing C. Shui, S. Zhang, Shuang N. Zhang, Yu P. Chen, Ling D. Kong, Peng J. Wang, Jing Q. Peng, L. Ji, A. Santangelo, Hong X. Yin, Jin L. Qu, L. Tao, Ming Y. Ge, Y. Huang, L. Zhang, Hong H. Liu, P. Zhang, W. Yu, Z. Chang, J. Li, Wen T. Ye, Pan P. Li, Zhuo L. Yu, Z. Yan
{"title":"MAXI J1820+070黑洞双星低频准周期振荡的相位分辨观测","authors":"Qing C. Shui, S. Zhang, Shuang N. Zhang, Yu P. Chen, Ling D. Kong, Peng J. Wang, Jing Q. Peng, L. Ji, A. Santangelo, Hong X. Yin, Jin L. Qu, L. Tao, Ming Y. Ge, Y. Huang, L. Zhang, Hong H. Liu, P. Zhang, W. Yu, Z. Chang, J. Li, Wen T. Ye, Pan P. Li, Zhuo L. Yu, Z. Yan","doi":"10.3847/1538-4357/acfc42","DOIUrl":null,"url":null,"abstract":"Abstract Although low-frequency quasiperiodic oscillations (LFQPOs) are commonly detected in the X-ray light curves of accreting black hole X-ray binaries, their origin still remains elusive. In this study, we conduct phase-resolved spectroscopy in a broad energy band for LFQPOs in MAXI J1820+070 during its 2018 outburst, utilizing Insight-HXMT observations. By employing the Hilbert–Huang transform method, we extract the intrinsic quasiperiodic oscillation (QPO) variability, and obtain the corresponding instantaneous amplitude, phase, and frequency functions for each data point. With well-defined phases, we construct QPO waveforms and phase-resolved spectra. By comparing the phase-folded waveform with that obtained from the Fourier method, we find that phase folding on the phase of the QPO fundamental frequency leads to a slight reduction in the contribution of the harmonic component. This suggests that the phase difference between QPO harmonics exhibits time variability. Phase-resolved spectral analysis reveals strong concurrent modulations of the spectral index and flux across the bright hard state. The modulation of the spectral index could potentially be explained by both the corona and jet precession models, with the latter requiring efficient acceleration within the jet. Furthermore, significant modulations in the reflection fraction are detected exclusively during the later stages of the bright hard state. These findings provide support for the geometric origin of LFQPOs and offer valuable insights into the evolution of the accretion geometry during the outburst in MAXI J1820+070.","PeriodicalId":50735,"journal":{"name":"Astrophysical Journal","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Phase-resolved View of the Low-frequency Quasiperiodic Oscillations from the Black Hole Binary MAXI J1820+070\",\"authors\":\"Qing C. Shui, S. Zhang, Shuang N. Zhang, Yu P. Chen, Ling D. Kong, Peng J. Wang, Jing Q. Peng, L. Ji, A. Santangelo, Hong X. Yin, Jin L. Qu, L. Tao, Ming Y. Ge, Y. Huang, L. Zhang, Hong H. Liu, P. Zhang, W. Yu, Z. Chang, J. Li, Wen T. Ye, Pan P. Li, Zhuo L. Yu, Z. Yan\",\"doi\":\"10.3847/1538-4357/acfc42\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Although low-frequency quasiperiodic oscillations (LFQPOs) are commonly detected in the X-ray light curves of accreting black hole X-ray binaries, their origin still remains elusive. In this study, we conduct phase-resolved spectroscopy in a broad energy band for LFQPOs in MAXI J1820+070 during its 2018 outburst, utilizing Insight-HXMT observations. By employing the Hilbert–Huang transform method, we extract the intrinsic quasiperiodic oscillation (QPO) variability, and obtain the corresponding instantaneous amplitude, phase, and frequency functions for each data point. With well-defined phases, we construct QPO waveforms and phase-resolved spectra. By comparing the phase-folded waveform with that obtained from the Fourier method, we find that phase folding on the phase of the QPO fundamental frequency leads to a slight reduction in the contribution of the harmonic component. This suggests that the phase difference between QPO harmonics exhibits time variability. Phase-resolved spectral analysis reveals strong concurrent modulations of the spectral index and flux across the bright hard state. The modulation of the spectral index could potentially be explained by both the corona and jet precession models, with the latter requiring efficient acceleration within the jet. Furthermore, significant modulations in the reflection fraction are detected exclusively during the later stages of the bright hard state. These findings provide support for the geometric origin of LFQPOs and offer valuable insights into the evolution of the accretion geometry during the outburst in MAXI J1820+070.\",\"PeriodicalId\":50735,\"journal\":{\"name\":\"Astrophysical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrophysical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/1538-4357/acfc42\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/acfc42","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

虽然在吸积黑洞x射线双星的x射线光曲线中经常检测到低频准周期振荡(LFQPOs),但其起源仍然难以捉摸。在这项研究中,我们利用Insight-HXMT观测数据,对MAXI J1820+070在2018年爆发期间的LFQPOs进行了宽能带的相位分辨光谱分析。利用Hilbert-Huang变换方法提取准周期振荡(QPO)的内禀变异性,得到各数据点对应的瞬时振幅、相位和频率函数。在相位明确的情况下,我们构建了QPO波形和相位分辨光谱。通过与傅里叶方法得到的相位折叠波形的比较,我们发现QPO基频相位上的相位折叠导致谐波分量的贡献略有降低。这表明QPO谐波之间的相位差具有时间可变性。相位分辨光谱分析揭示了光谱指数和通量在明亮硬态上的强并发调制。光谱指数的调制可以用日冕和喷流进动模型来解释,后者需要喷流内部的有效加速。此外,在明亮硬态的后期阶段检测到反射分数的显著调制。这些发现为LFQPOs的几何起源提供了支持,并对MAXI J1820+070突出期间的吸积几何演化提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Phase-resolved View of the Low-frequency Quasiperiodic Oscillations from the Black Hole Binary MAXI J1820+070
Abstract Although low-frequency quasiperiodic oscillations (LFQPOs) are commonly detected in the X-ray light curves of accreting black hole X-ray binaries, their origin still remains elusive. In this study, we conduct phase-resolved spectroscopy in a broad energy band for LFQPOs in MAXI J1820+070 during its 2018 outburst, utilizing Insight-HXMT observations. By employing the Hilbert–Huang transform method, we extract the intrinsic quasiperiodic oscillation (QPO) variability, and obtain the corresponding instantaneous amplitude, phase, and frequency functions for each data point. With well-defined phases, we construct QPO waveforms and phase-resolved spectra. By comparing the phase-folded waveform with that obtained from the Fourier method, we find that phase folding on the phase of the QPO fundamental frequency leads to a slight reduction in the contribution of the harmonic component. This suggests that the phase difference between QPO harmonics exhibits time variability. Phase-resolved spectral analysis reveals strong concurrent modulations of the spectral index and flux across the bright hard state. The modulation of the spectral index could potentially be explained by both the corona and jet precession models, with the latter requiring efficient acceleration within the jet. Furthermore, significant modulations in the reflection fraction are detected exclusively during the later stages of the bright hard state. These findings provide support for the geometric origin of LFQPOs and offer valuable insights into the evolution of the accretion geometry during the outburst in MAXI J1820+070.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astrophysical Journal
Astrophysical Journal 地学天文-天文与天体物理
CiteScore
8.40
自引率
30.60%
发文量
2854
审稿时长
1 months
期刊介绍: The Astrophysical Journal is the foremost research journal in the world devoted to recent developments, discoveries, and theories in astronomy and astrophysics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信