字母模式约束和部分有序NFAs上的排列状态复杂度和Parikh等价的语言包含问题

IF 0.6 4区 计算机科学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Stefan Hoffmann
{"title":"字母模式约束和部分有序NFAs上的排列状态复杂度和Parikh等价的语言包含问题","authors":"Stefan Hoffmann","doi":"10.1142/s0129054123430025","DOIUrl":null,"url":null,"abstract":"We investigate the state complexity of the permutation operation, or the commutative closure, on Alphabetical Pattern Constraints (APCs). This class corresponds to level [Formula: see text] of the Straubing-Thérien hierarchy and includes the finite, the piecewise testable, or [Formula: see text]-trivial, and the [Formula: see text]-trivial and [Formula: see text]-trivial languages. We give a sharp state complexity bound expressed in terms of the longest strings in the unary projection languages of an associated finite language. Additionally, for a subclass, we give sharp bounds expressed in terms of the size of a recognizing input automaton and the size of the alphabet. We also state a related state complexity bound for the commutative closure on finite languages. Lastly, we investigate the language inclusion, equivalence and universality problems on APCs up to permutational, or Parikh, equivalence. These problems are known to be [Formula: see text]-complete on APCs in general, even for fixed alphabets. We show them to be decidable in polynomial time for fixed alphabets if we only want to solve them up to Parikh equivalence. We also correct a mistake from the conference version in a bound on the size of recognizing automata for the commutative closure.","PeriodicalId":50323,"journal":{"name":"International Journal of Foundations of Computer Science","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"State Complexity of Permutation and the Language Inclusion Problem up to Parikh Equivalence on Alphabetical Pattern Constraints and Partially Ordered NFAs\",\"authors\":\"Stefan Hoffmann\",\"doi\":\"10.1142/s0129054123430025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the state complexity of the permutation operation, or the commutative closure, on Alphabetical Pattern Constraints (APCs). This class corresponds to level [Formula: see text] of the Straubing-Thérien hierarchy and includes the finite, the piecewise testable, or [Formula: see text]-trivial, and the [Formula: see text]-trivial and [Formula: see text]-trivial languages. We give a sharp state complexity bound expressed in terms of the longest strings in the unary projection languages of an associated finite language. Additionally, for a subclass, we give sharp bounds expressed in terms of the size of a recognizing input automaton and the size of the alphabet. We also state a related state complexity bound for the commutative closure on finite languages. Lastly, we investigate the language inclusion, equivalence and universality problems on APCs up to permutational, or Parikh, equivalence. These problems are known to be [Formula: see text]-complete on APCs in general, even for fixed alphabets. We show them to be decidable in polynomial time for fixed alphabets if we only want to solve them up to Parikh equivalence. We also correct a mistake from the conference version in a bound on the size of recognizing automata for the commutative closure.\",\"PeriodicalId\":50323,\"journal\":{\"name\":\"International Journal of Foundations of Computer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0129054123430025\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0129054123430025","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了字母模式约束(APCs)上置换操作或交换闭包的状态复杂度。这个类对应于strauing - thsamrien层次的层次[公式:见文本],包括有限的、分段可测试的或[公式:见文本]-琐碎的语言,以及[公式:见文本]-琐碎的语言和[公式:见文本]-琐碎的语言。我们给出了一个用相关有限语言的一元投影语言的最长字符串表示的尖锐状态复杂度界。此外,对于子类,我们给出了用识别输入自动机的大小和字母表的大小表示的明确界限。我们还给出了有限语言上交换闭包的相关状态复杂度界。最后,我们研究了apc的语言包含、等价和普适问题,直至置换等价。这些问题在一般的装甲运兵车上是完全的,即使是固定的字母。对于固定字母,我们证明它们在多项式时间内是可决定的如果我们只想解到Parikh等价。我们还纠正了会议版本中对交换闭包的识别自动机大小的限制中的一个错误。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
State Complexity of Permutation and the Language Inclusion Problem up to Parikh Equivalence on Alphabetical Pattern Constraints and Partially Ordered NFAs
We investigate the state complexity of the permutation operation, or the commutative closure, on Alphabetical Pattern Constraints (APCs). This class corresponds to level [Formula: see text] of the Straubing-Thérien hierarchy and includes the finite, the piecewise testable, or [Formula: see text]-trivial, and the [Formula: see text]-trivial and [Formula: see text]-trivial languages. We give a sharp state complexity bound expressed in terms of the longest strings in the unary projection languages of an associated finite language. Additionally, for a subclass, we give sharp bounds expressed in terms of the size of a recognizing input automaton and the size of the alphabet. We also state a related state complexity bound for the commutative closure on finite languages. Lastly, we investigate the language inclusion, equivalence and universality problems on APCs up to permutational, or Parikh, equivalence. These problems are known to be [Formula: see text]-complete on APCs in general, even for fixed alphabets. We show them to be decidable in polynomial time for fixed alphabets if we only want to solve them up to Parikh equivalence. We also correct a mistake from the conference version in a bound on the size of recognizing automata for the commutative closure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Foundations of Computer Science
International Journal of Foundations of Computer Science 工程技术-计算机:理论方法
CiteScore
1.60
自引率
12.50%
发文量
63
审稿时长
3 months
期刊介绍: The International Journal of Foundations of Computer Science is a bimonthly journal that publishes articles which contribute new theoretical results in all areas of the foundations of computer science. The theoretical and mathematical aspects covered include: - Algebraic theory of computing and formal systems - Algorithm and system implementation issues - Approximation, probabilistic, and randomized algorithms - Automata and formal languages - Automated deduction - Combinatorics and graph theory - Complexity theory - Computational biology and bioinformatics - Cryptography - Database theory - Data structures - Design and analysis of algorithms - DNA computing - Foundations of computer security - Foundations of high-performance computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信