非线性薛定谔系统基态的稳定性

Pub Date : 2023-11-01 DOI:10.58997/ejde.2023.76
Liliana Cely
{"title":"非线性薛定谔系统基态的稳定性","authors":"Liliana Cely","doi":"10.58997/ejde.2023.76","DOIUrl":null,"url":null,"abstract":"In this article, we study existence and stability of ground states for a system of two coupled nonlinear Schrodinger equations with logarithmic nonlinearity. Moreover, global well-posedness is verified for the Cauchy problem in \\(H^{1}(\\mathbb{R})\\times H^{1}(\\mathbb{R})\\) and in an appropriate Orlicz space.
 For more information see https://ejde.math.txstate.edu/Volumes/2023/76/abstr.html","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability of ground states of nonlinear Schrodinger systems\",\"authors\":\"Liliana Cely\",\"doi\":\"10.58997/ejde.2023.76\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we study existence and stability of ground states for a system of two coupled nonlinear Schrodinger equations with logarithmic nonlinearity. Moreover, global well-posedness is verified for the Cauchy problem in \\\\(H^{1}(\\\\mathbb{R})\\\\times H^{1}(\\\\mathbb{R})\\\\) and in an appropriate Orlicz space.
 For more information see https://ejde.math.txstate.edu/Volumes/2023/76/abstr.html\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.58997/ejde.2023.76\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58997/ejde.2023.76","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有对数非线性的两个耦合非线性薛定谔方程系统基态的存在性和稳定性。此外,在\(H^{1}(\mathbb{R})\times H^{1}(\mathbb{R})\)和适当的Orlicz空间中验证了Cauchy问题的全局适定性。
欲了解更多信息,请参阅https://ejde.math.txstate.edu/Volumes/2023/76/abstr.html
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Stability of ground states of nonlinear Schrodinger systems
In this article, we study existence and stability of ground states for a system of two coupled nonlinear Schrodinger equations with logarithmic nonlinearity. Moreover, global well-posedness is verified for the Cauchy problem in \(H^{1}(\mathbb{R})\times H^{1}(\mathbb{R})\) and in an appropriate Orlicz space. For more information see https://ejde.math.txstate.edu/Volumes/2023/76/abstr.html
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信