半导体中的能隙-折射率关系——用wemle - didomenico模型统一Moss、Ravindra和Herve-Vandamme关系

Solids Pub Date : 2023-11-01 DOI:10.3390/solids4040020
Aneer Lamichhane
{"title":"半导体中的能隙-折射率关系——用wemle - didomenico模型统一Moss、Ravindra和Herve-Vandamme关系","authors":"Aneer Lamichhane","doi":"10.3390/solids4040020","DOIUrl":null,"url":null,"abstract":"The refractive index of solids gauges their transparency to incident light, while the energy gap determines the threshold for light absorption. This paper provides a mathematical formulation for the relationship between the refractive index and the energy gap. It is also established that this formulation aided in the unification of the Moss, Ravindra, and Herve–Vandamme relationships.","PeriodicalId":21906,"journal":{"name":"Solids","volume":"55 9","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Energy-Gap-Refractive Index Relations in Semiconductors—Using Wemple–DiDomenico Model to Unify Moss, Ravindra, and Herve–Vandamme Relationships\",\"authors\":\"Aneer Lamichhane\",\"doi\":\"10.3390/solids4040020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The refractive index of solids gauges their transparency to incident light, while the energy gap determines the threshold for light absorption. This paper provides a mathematical formulation for the relationship between the refractive index and the energy gap. It is also established that this formulation aided in the unification of the Moss, Ravindra, and Herve–Vandamme relationships.\",\"PeriodicalId\":21906,\"journal\":{\"name\":\"Solids\",\"volume\":\"55 9\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/solids4040020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/solids4040020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

固体的折射率衡量其对入射光的透明度,而能量间隙决定光吸收的阈值。本文给出了折射率与能隙关系的数学表达式。这一公式也有助于Moss、Ravindra和Herve-Vandamme关系的统一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy-Gap-Refractive Index Relations in Semiconductors—Using Wemple–DiDomenico Model to Unify Moss, Ravindra, and Herve–Vandamme Relationships
The refractive index of solids gauges their transparency to incident light, while the energy gap determines the threshold for light absorption. This paper provides a mathematical formulation for the relationship between the refractive index and the energy gap. It is also established that this formulation aided in the unification of the Moss, Ravindra, and Herve–Vandamme relationships.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信