飞机燃油量系统退化部件的神经网络辨识

R. Arcuri
{"title":"飞机燃油量系统退化部件的神经网络辨识","authors":"R. Arcuri","doi":"10.21741/9781644902813-15","DOIUrl":null,"url":null,"abstract":"Abstract. The physical and software architecture design of the fuel system of high-performance aircrafts is very complex and represents a challenging topic for aeronautic engineers. Among the main functionalities, there is the calculation of the on board fuel quantity, consisting in data computed by the fuel gauging sub-system, shown to the pilot on the cockpit display and used by the flight control system for aircraft controllability. Due to the large number of sensors and to a strongly ramified calculation code, faults and performance degradation of components, are difficult to be detected/isolated, since the operation would require an invasive investigation on the aircraft. To reduce the impact of the fault detection and isolation process in terms of time and costs, a digital twin of the fuel system has been developed and coupled with a condition-monitoring algorithm based on machine-learning methods. It is thus possible to quickly replicate the mission profiles during which the faults can occur, to calculate the residual fuel mass in parallel with the fuel computer and to precisely identify which component caused the system failure. A neural network, trained on experimental flight data, has been developed to provide reliable data. Once validated , the neural network is coupled with a 0D model that simulates the movement of the fuel inside the tank. In this way, it is possible to obtain the mass of fuel, simulating any flight mission profile. This approach optimizes the analysis of system malfunctions in terms of time and costs, highlighting unexpected mass values, otherwise undetectable. The reliability of the neural network can clearly be increased by training the algorithm with additional flight data, which can be derived from experimental or virtual flights simulated using the 0D model. The versatility of this process makes it applicable for different aircrafts as well as for further developments.","PeriodicalId":87445,"journal":{"name":"Materials Research Society symposia proceedings. Materials Research Society","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural networks for the identification of degraded components of aircraft fuel quantity system\",\"authors\":\"R. Arcuri\",\"doi\":\"10.21741/9781644902813-15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. The physical and software architecture design of the fuel system of high-performance aircrafts is very complex and represents a challenging topic for aeronautic engineers. Among the main functionalities, there is the calculation of the on board fuel quantity, consisting in data computed by the fuel gauging sub-system, shown to the pilot on the cockpit display and used by the flight control system for aircraft controllability. Due to the large number of sensors and to a strongly ramified calculation code, faults and performance degradation of components, are difficult to be detected/isolated, since the operation would require an invasive investigation on the aircraft. To reduce the impact of the fault detection and isolation process in terms of time and costs, a digital twin of the fuel system has been developed and coupled with a condition-monitoring algorithm based on machine-learning methods. It is thus possible to quickly replicate the mission profiles during which the faults can occur, to calculate the residual fuel mass in parallel with the fuel computer and to precisely identify which component caused the system failure. A neural network, trained on experimental flight data, has been developed to provide reliable data. Once validated , the neural network is coupled with a 0D model that simulates the movement of the fuel inside the tank. In this way, it is possible to obtain the mass of fuel, simulating any flight mission profile. This approach optimizes the analysis of system malfunctions in terms of time and costs, highlighting unexpected mass values, otherwise undetectable. The reliability of the neural network can clearly be increased by training the algorithm with additional flight data, which can be derived from experimental or virtual flights simulated using the 0D model. The versatility of this process makes it applicable for different aircrafts as well as for further developments.\",\"PeriodicalId\":87445,\"journal\":{\"name\":\"Materials Research Society symposia proceedings. Materials Research Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Society symposia proceedings. Materials Research Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21741/9781644902813-15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Society symposia proceedings. Materials Research Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21741/9781644902813-15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要高性能飞机燃油系统的物理和软件架构设计非常复杂,是航空工程师面临的一个具有挑战性的课题。在主要功能中,有机载燃油量的计算,包括由燃油计量子系统计算的数据,在驾驶舱显示器上显示给飞行员,并由飞行控制系统用于飞机的可控性。由于大量的传感器和高度分散的计算代码,部件的故障和性能下降很难被检测/隔离,因为操作将需要对飞机进行侵入性调查。为了减少故障检测和隔离过程在时间和成本方面的影响,已经开发了一个燃料系统的数字孪生体,并结合了基于机器学习方法的状态监测算法。因此,有可能快速复制可能发生故障的任务概况,与燃料计算机并行计算剩余燃料质量,并精确识别导致系统故障的组件。在实验飞行数据的训练下,开发了一个神经网络来提供可靠的数据。一旦验证,神经网络将与模拟油箱内燃料运动的0D模型相结合。这样,就有可能获得燃料质量,模拟任何飞行任务的轮廓。这种方法在时间和成本方面优化了系统故障的分析,突出了意想不到的质量值,否则无法检测到。通过使用额外的飞行数据来训练算法,可以明显提高神经网络的可靠性,这些数据可以来自使用0D模型模拟的实验或虚拟飞行。该工艺的多功能性使其适用于不同的飞机以及进一步的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural networks for the identification of degraded components of aircraft fuel quantity system
Abstract. The physical and software architecture design of the fuel system of high-performance aircrafts is very complex and represents a challenging topic for aeronautic engineers. Among the main functionalities, there is the calculation of the on board fuel quantity, consisting in data computed by the fuel gauging sub-system, shown to the pilot on the cockpit display and used by the flight control system for aircraft controllability. Due to the large number of sensors and to a strongly ramified calculation code, faults and performance degradation of components, are difficult to be detected/isolated, since the operation would require an invasive investigation on the aircraft. To reduce the impact of the fault detection and isolation process in terms of time and costs, a digital twin of the fuel system has been developed and coupled with a condition-monitoring algorithm based on machine-learning methods. It is thus possible to quickly replicate the mission profiles during which the faults can occur, to calculate the residual fuel mass in parallel with the fuel computer and to precisely identify which component caused the system failure. A neural network, trained on experimental flight data, has been developed to provide reliable data. Once validated , the neural network is coupled with a 0D model that simulates the movement of the fuel inside the tank. In this way, it is possible to obtain the mass of fuel, simulating any flight mission profile. This approach optimizes the analysis of system malfunctions in terms of time and costs, highlighting unexpected mass values, otherwise undetectable. The reliability of the neural network can clearly be increased by training the algorithm with additional flight data, which can be derived from experimental or virtual flights simulated using the 0D model. The versatility of this process makes it applicable for different aircrafts as well as for further developments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信