{"title":"叶酸聚乙烯亚胺多聚物将基因转移到三阴性乳腺癌细胞中","authors":"Devrim DEMİR DORA","doi":"10.55262/fabadeczacilik.1347084","DOIUrl":null,"url":null,"abstract":"Triple negative breast cancer (TNBC) is the most aggressive subtype of breast cancer and lacks hormonal and growth factor receptors commonly expressed by other types of breast cancer making it difficult to treat by conventional treatments. Although gene therapy might be a therapeutic option, delivery of genes into TNBC cells is still an obstacle. In this study, it was aimed to overcome this obstacle by folic acid (FA) conjugated polyplex formulations to targeting the folate receptor which has been reported to be overexpressed in TNBC cells. Non-covalent complexes of FA and LPEI polyplexes (FA-polyplexes) were prepared at six different ratios. After characterization studies, cytotoxicity and transfection ability were evaluated. Conjugation of FA by increasing amounts of LPEI polyplexes, increased the size from 204.1 to 469.8 nm. Their PDI values were between 0.31-0.51, and zeta potentials were positive. After treatment with polyplex formulations, cell viability was decreased significantly starting from 3:1(w/w) polymer:pDNA ratio and from 3:3:1 (w/w)FA:polyplex ratio. Cell viability decreased below 70% above the 5:1 (w/w) polymer:pDNA ratio. Addition of folic acid to polyplex formulations reversed the cytotoxicity of P3, P4 and P5 formulations. Although LV-RFP pDNA was delivered successfully into 4T1 cells by all formulations, fluorescent microscope images showed that, the optimal formulations were FA-P3 and FA-P4. This gene delivery system, generated by non-covalent conjugation of folic acid to polyplexes, increased the uptake and decreased the cytotoxicity of LPEI polyplexes. Non-covalent complexes of folic acid-LPEI polyplexes represent promising delivery systems in gene therapy, directed against cancer cells expressing folate receptors.","PeriodicalId":36004,"journal":{"name":"Fabad Journal of Pharmaceutical Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Üçlü negatif meme kanseri hücrelerine folik asit polietilenimin polipleksleri ile gen aktarımı\",\"authors\":\"Devrim DEMİR DORA\",\"doi\":\"10.55262/fabadeczacilik.1347084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Triple negative breast cancer (TNBC) is the most aggressive subtype of breast cancer and lacks hormonal and growth factor receptors commonly expressed by other types of breast cancer making it difficult to treat by conventional treatments. Although gene therapy might be a therapeutic option, delivery of genes into TNBC cells is still an obstacle. In this study, it was aimed to overcome this obstacle by folic acid (FA) conjugated polyplex formulations to targeting the folate receptor which has been reported to be overexpressed in TNBC cells. Non-covalent complexes of FA and LPEI polyplexes (FA-polyplexes) were prepared at six different ratios. After characterization studies, cytotoxicity and transfection ability were evaluated. Conjugation of FA by increasing amounts of LPEI polyplexes, increased the size from 204.1 to 469.8 nm. Their PDI values were between 0.31-0.51, and zeta potentials were positive. After treatment with polyplex formulations, cell viability was decreased significantly starting from 3:1(w/w) polymer:pDNA ratio and from 3:3:1 (w/w)FA:polyplex ratio. Cell viability decreased below 70% above the 5:1 (w/w) polymer:pDNA ratio. Addition of folic acid to polyplex formulations reversed the cytotoxicity of P3, P4 and P5 formulations. Although LV-RFP pDNA was delivered successfully into 4T1 cells by all formulations, fluorescent microscope images showed that, the optimal formulations were FA-P3 and FA-P4. This gene delivery system, generated by non-covalent conjugation of folic acid to polyplexes, increased the uptake and decreased the cytotoxicity of LPEI polyplexes. Non-covalent complexes of folic acid-LPEI polyplexes represent promising delivery systems in gene therapy, directed against cancer cells expressing folate receptors.\",\"PeriodicalId\":36004,\"journal\":{\"name\":\"Fabad Journal of Pharmaceutical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fabad Journal of Pharmaceutical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55262/fabadeczacilik.1347084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fabad Journal of Pharmaceutical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55262/fabadeczacilik.1347084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Üçlü negatif meme kanseri hücrelerine folik asit polietilenimin polipleksleri ile gen aktarımı
Triple negative breast cancer (TNBC) is the most aggressive subtype of breast cancer and lacks hormonal and growth factor receptors commonly expressed by other types of breast cancer making it difficult to treat by conventional treatments. Although gene therapy might be a therapeutic option, delivery of genes into TNBC cells is still an obstacle. In this study, it was aimed to overcome this obstacle by folic acid (FA) conjugated polyplex formulations to targeting the folate receptor which has been reported to be overexpressed in TNBC cells. Non-covalent complexes of FA and LPEI polyplexes (FA-polyplexes) were prepared at six different ratios. After characterization studies, cytotoxicity and transfection ability were evaluated. Conjugation of FA by increasing amounts of LPEI polyplexes, increased the size from 204.1 to 469.8 nm. Their PDI values were between 0.31-0.51, and zeta potentials were positive. After treatment with polyplex formulations, cell viability was decreased significantly starting from 3:1(w/w) polymer:pDNA ratio and from 3:3:1 (w/w)FA:polyplex ratio. Cell viability decreased below 70% above the 5:1 (w/w) polymer:pDNA ratio. Addition of folic acid to polyplex formulations reversed the cytotoxicity of P3, P4 and P5 formulations. Although LV-RFP pDNA was delivered successfully into 4T1 cells by all formulations, fluorescent microscope images showed that, the optimal formulations were FA-P3 and FA-P4. This gene delivery system, generated by non-covalent conjugation of folic acid to polyplexes, increased the uptake and decreased the cytotoxicity of LPEI polyplexes. Non-covalent complexes of folic acid-LPEI polyplexes represent promising delivery systems in gene therapy, directed against cancer cells expressing folate receptors.
期刊介绍:
The FABAD Journal of Pharmaceutical Sciences is published triannually by the Society of Pharmaceutical Sciences of Ankara (FABAD). All expressions of opinion and statements of supposed facts appearing in articles and/or advertisiments carried in this journal are published on the responsibility of the author and/or advertiser, anda re not to be regarded those of the Society of Pharmaceutical Sciences of Ankara. The manuscript submitted to the Journal has the requirement of not being published previously and has not been submitted elsewhere. Manuscripts should be prepared in accordance with the requirements specified as given in detail in the section of “Information for Authors”. The submission of the manuscript to the Journal is not a condition for acceptance; articles are accepted or rejected on merit alone. All rights reserved.