2023电化学能源材料分子建模路线图

IF 7 3区 材料科学 Q1 ENERGY & FUELS
Chao Zhang, Jun Cheng, Yiming Chen, Maria Chan, Qiong Cai, Rodrigo P Carvalho, Cleber F N Marchiori, Daniel Brandell, C Moyses Araujo, Ming Chen, Xiangyu Ji, Guang Feng, Kateryna Goloviznina, Alessandra Serva, Mathieu Salanne, Toshihiko Mandai, Tomooki Hosaka, Mirna Alhanash, Patrik Johansson, Yunze Qiu, Hai Xiao, Michael H Eikerling, Ryosuke Jinnouchi, Marko M Melander, Georg Kastlunger, Assil Bouzid, Alfredo Pasquarello, Seung-Jae Shin, Minho M Kim, Hyungjun Kim, Kathleen Schwarz, Ravishankar Sundararaman
{"title":"2023电化学能源材料分子建模路线图","authors":"Chao Zhang, Jun Cheng, Yiming Chen, Maria Chan, Qiong Cai, Rodrigo P Carvalho, Cleber F N Marchiori, Daniel Brandell, C Moyses Araujo, Ming Chen, Xiangyu Ji, Guang Feng, Kateryna Goloviznina, Alessandra Serva, Mathieu Salanne, Toshihiko Mandai, Tomooki Hosaka, Mirna Alhanash, Patrik Johansson, Yunze Qiu, Hai Xiao, Michael H Eikerling, Ryosuke Jinnouchi, Marko M Melander, Georg Kastlunger, Assil Bouzid, Alfredo Pasquarello, Seung-Jae Shin, Minho M Kim, Hyungjun Kim, Kathleen Schwarz, Ravishankar Sundararaman","doi":"10.1088/2515-7655/acfe9b","DOIUrl":null,"url":null,"abstract":"New materials for electrochemical energy storage and conversion are the key to the electrification and sustainable development of our modern societies. Molecular modelling based on the principles of quantum mechanics and statistical mechanics as well as empowered by machine learning techniques can help us to understand, control and design electrochemical energy materials at atomistic precision. Therefore, this roadmap, which is a collection of authoritative opinions, serves as a gateway for both the experts and the beginners to have a quick overview of the current status and corresponding challenges in molecular modelling of electrochemical energy materials for batteries, supercapacitors, CO2 reduction reaction, and fuel cell applications.","PeriodicalId":48500,"journal":{"name":"Journal of Physics-Energy","volume":"80 1","pages":"0"},"PeriodicalIF":7.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"2023 roadmap on molecular modelling of electrochemical energy materials\",\"authors\":\"Chao Zhang, Jun Cheng, Yiming Chen, Maria Chan, Qiong Cai, Rodrigo P Carvalho, Cleber F N Marchiori, Daniel Brandell, C Moyses Araujo, Ming Chen, Xiangyu Ji, Guang Feng, Kateryna Goloviznina, Alessandra Serva, Mathieu Salanne, Toshihiko Mandai, Tomooki Hosaka, Mirna Alhanash, Patrik Johansson, Yunze Qiu, Hai Xiao, Michael H Eikerling, Ryosuke Jinnouchi, Marko M Melander, Georg Kastlunger, Assil Bouzid, Alfredo Pasquarello, Seung-Jae Shin, Minho M Kim, Hyungjun Kim, Kathleen Schwarz, Ravishankar Sundararaman\",\"doi\":\"10.1088/2515-7655/acfe9b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"New materials for electrochemical energy storage and conversion are the key to the electrification and sustainable development of our modern societies. Molecular modelling based on the principles of quantum mechanics and statistical mechanics as well as empowered by machine learning techniques can help us to understand, control and design electrochemical energy materials at atomistic precision. Therefore, this roadmap, which is a collection of authoritative opinions, serves as a gateway for both the experts and the beginners to have a quick overview of the current status and corresponding challenges in molecular modelling of electrochemical energy materials for batteries, supercapacitors, CO2 reduction reaction, and fuel cell applications.\",\"PeriodicalId\":48500,\"journal\":{\"name\":\"Journal of Physics-Energy\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics-Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2515-7655/acfe9b\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics-Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2515-7655/acfe9b","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1

摘要

用于电化学储能和转换的新型材料是实现现代社会电气化和可持续发展的关键。基于量子力学和统计力学原理以及机器学习技术的分子建模可以帮助我们在原子精度上理解、控制和设计电化学能源材料。因此,本路线图汇集了权威观点,为专家和初学者提供了一个门户,可以快速概述电池、超级电容器、CO 2还原反应和燃料电池应用中电化学能源材料分子建模的现状和相应的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
2023 roadmap on molecular modelling of electrochemical energy materials
New materials for electrochemical energy storage and conversion are the key to the electrification and sustainable development of our modern societies. Molecular modelling based on the principles of quantum mechanics and statistical mechanics as well as empowered by machine learning techniques can help us to understand, control and design electrochemical energy materials at atomistic precision. Therefore, this roadmap, which is a collection of authoritative opinions, serves as a gateway for both the experts and the beginners to have a quick overview of the current status and corresponding challenges in molecular modelling of electrochemical energy materials for batteries, supercapacitors, CO2 reduction reaction, and fuel cell applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.90
自引率
1.40%
发文量
58
期刊介绍: The Journal of Physics-Energy is an interdisciplinary and fully open-access publication dedicated to setting the agenda for the identification and dissemination of the most exciting and significant advancements in all realms of energy-related research. Committed to the principles of open science, JPhys Energy is designed to maximize the exchange of knowledge between both established and emerging communities, thereby fostering a collaborative and inclusive environment for the advancement of energy research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信