Károly J. Böröczky, Alessio Figalli, João P. G. Ramos
{"title":"任意可测函数的pramokopa - leindler不等式的定量稳定性结果","authors":"Károly J. Böröczky, Alessio Figalli, João P. G. Ramos","doi":"10.4171/aihpc/97","DOIUrl":null,"url":null,"abstract":"We prove that if a triplet of functions satisfies almost equality in the Pr\\'ekopa-Leindler inequality, then these functions are close to a common log-concave function, up to multiplication and rescaling. Our result holds for general measurable functions in all dimensions, and provides a quantitative stability estimate with computable constants.","PeriodicalId":55514,"journal":{"name":"Annales De L Institut Henri Poincare-Analyse Non Lineaire","volume":"49 10","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A quantitative stability result for the Prékopa–Leindler inequality for arbitrary measurable functions\",\"authors\":\"Károly J. Böröczky, Alessio Figalli, João P. G. Ramos\",\"doi\":\"10.4171/aihpc/97\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that if a triplet of functions satisfies almost equality in the Pr\\\\'ekopa-Leindler inequality, then these functions are close to a common log-concave function, up to multiplication and rescaling. Our result holds for general measurable functions in all dimensions, and provides a quantitative stability estimate with computable constants.\",\"PeriodicalId\":55514,\"journal\":{\"name\":\"Annales De L Institut Henri Poincare-Analyse Non Lineaire\",\"volume\":\"49 10\",\"pages\":\"0\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales De L Institut Henri Poincare-Analyse Non Lineaire\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/aihpc/97\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-Analyse Non Lineaire","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/aihpc/97","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A quantitative stability result for the Prékopa–Leindler inequality for arbitrary measurable functions
We prove that if a triplet of functions satisfies almost equality in the Pr\'ekopa-Leindler inequality, then these functions are close to a common log-concave function, up to multiplication and rescaling. Our result holds for general measurable functions in all dimensions, and provides a quantitative stability estimate with computable constants.
期刊介绍:
The Nonlinear Analysis section of the Annales de l''Institut Henri Poincaré is an international journal created in 1983 which publishes original and high quality research articles. It concentrates on all domains concerned with nonlinear analysis, specially applicable to PDE, mechanics, physics, economy, without overlooking the numerical aspects.