阻力系数对晃动槽内垂直多孔挡板性能的影响

IF 2.6 Q1 ENGINEERING, MULTIDISCIPLINARY
Mallikarjun S. Bhandiwad, B.M. Dodamani, Deepak M.D.
{"title":"阻力系数对晃动槽内垂直多孔挡板性能的影响","authors":"Mallikarjun S. Bhandiwad, B.M. Dodamani, Deepak M.D.","doi":"10.1108/jedt-01-2023-0021","DOIUrl":null,"url":null,"abstract":"Purpose The present work involves analytical and experimental investigation of sloshing in a two-dimensional rectangular tank including the effect of porous baffles to control and/or reduce the wave motion in the sloshing tank. The purpose of this study is to assess the analytical solutions of the drag coefficient effect on porous baffles performance to track free surface motion variation in the sloshing tank by comparison with experimental shake table tests under a range of sway excitation. Design/methodology/approach The linear second-order ordinary differential equations for liquid sloshing in the rectangular tank were solved using Newmark’s beta method and obtained the analytical solutions for liquid sloshing with dual vertical porous baffles of full submergence depths in a sway-oscillated rectangular tank following the methodology similar to Warnitchai and Pinkaew (1998) and Tait (2008). Findings The porous baffles significantly reduce wave elevation in the varying filled levels of the tank compared to the baffle-free tank under the range of excitation frequencies. It is observed that the Reynolds number-dependent drag coefficient for porous baffles in the tank can significantly reduce the sloshing elevations and is found to be effective to achieve higher damping compared to the porosity-dependent drag coefficient for porous baffles in the sloshing tank. The analytical model’s response to free surface elevation variations in the sloshing tank was compared with the experiment’s test results. The analytical results matched with shake table test results with a quantitative difference near the first resonant frequency. Research limitations/implications The scope of the study is limited to porous baffles performance under range sway motion and three different filling levels in the tank. The porous baffle performance includes Reynolds number dependent drag coefficient to explore the damping effect in the sloshing tank. Originality/value The porous baffles with low-level porosities in the sloshing tank have many engineering applications where the first resonant mode of sloshing in the tank is more important. The porous baffle drag coefficient is an important parameter to study the baffle’s damping effect in sloshing tanks. Hence, obtained analytical solution for liquid sloshing in the rectangular tank with Reynolds number as well as porosity-dependent drag coefficient (model 1) and porosity-dependent drag coefficient porous baffles (model 2) performance is discussed. The model’s test results were validated using a series of shake table sloshing experiments for three fill levels in the tank with sway motion at various excitation frequencies covering the first four sloshing resonant modes.","PeriodicalId":46533,"journal":{"name":"Journal of Engineering Design and Technology","volume":"87 2 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of the drag coefficient on the performance of vertical porous baffles in a sloshing tank\",\"authors\":\"Mallikarjun S. Bhandiwad, B.M. Dodamani, Deepak M.D.\",\"doi\":\"10.1108/jedt-01-2023-0021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose The present work involves analytical and experimental investigation of sloshing in a two-dimensional rectangular tank including the effect of porous baffles to control and/or reduce the wave motion in the sloshing tank. The purpose of this study is to assess the analytical solutions of the drag coefficient effect on porous baffles performance to track free surface motion variation in the sloshing tank by comparison with experimental shake table tests under a range of sway excitation. Design/methodology/approach The linear second-order ordinary differential equations for liquid sloshing in the rectangular tank were solved using Newmark’s beta method and obtained the analytical solutions for liquid sloshing with dual vertical porous baffles of full submergence depths in a sway-oscillated rectangular tank following the methodology similar to Warnitchai and Pinkaew (1998) and Tait (2008). Findings The porous baffles significantly reduce wave elevation in the varying filled levels of the tank compared to the baffle-free tank under the range of excitation frequencies. It is observed that the Reynolds number-dependent drag coefficient for porous baffles in the tank can significantly reduce the sloshing elevations and is found to be effective to achieve higher damping compared to the porosity-dependent drag coefficient for porous baffles in the sloshing tank. The analytical model’s response to free surface elevation variations in the sloshing tank was compared with the experiment’s test results. The analytical results matched with shake table test results with a quantitative difference near the first resonant frequency. Research limitations/implications The scope of the study is limited to porous baffles performance under range sway motion and three different filling levels in the tank. The porous baffle performance includes Reynolds number dependent drag coefficient to explore the damping effect in the sloshing tank. Originality/value The porous baffles with low-level porosities in the sloshing tank have many engineering applications where the first resonant mode of sloshing in the tank is more important. The porous baffle drag coefficient is an important parameter to study the baffle’s damping effect in sloshing tanks. Hence, obtained analytical solution for liquid sloshing in the rectangular tank with Reynolds number as well as porosity-dependent drag coefficient (model 1) and porosity-dependent drag coefficient porous baffles (model 2) performance is discussed. The model’s test results were validated using a series of shake table sloshing experiments for three fill levels in the tank with sway motion at various excitation frequencies covering the first four sloshing resonant modes.\",\"PeriodicalId\":46533,\"journal\":{\"name\":\"Journal of Engineering Design and Technology\",\"volume\":\"87 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Design and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/jedt-01-2023-0021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Design and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/jedt-01-2023-0021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

目的对二维矩形槽内的晃动进行了分析和实验研究,包括多孔挡板对控制和/或减少晃动槽内波浪运动的影响。本研究的目的是通过与实验振动台试验对比,在一定范围的摇摆激励下,评估阻力系数对多孔挡板跟踪晃动槽内自由表面运动变化性能影响的解析解。采用Newmark 's beta方法求解矩形槽内液体晃动的线性二阶常微分方程,并按照类似Warnitchai和Pinkaew(1998)和Tait(2008)的方法,得到了摆振矩形槽内全浸没深度双垂直多孔挡板液体晃动的解析解。结果在不同的激励频率范围内,多孔隔板比无隔板显著降低了不同填充水平下的波浪高度。研究发现,与多孔隔板的孔隙率相关阻力系数相比,多孔隔板的雷诺数相关阻力系数可以显著降低晃动高度,并且可以有效地实现更高的阻尼。将分析模型对晃动槽内自由表面高程变化的响应与试验结果进行了比较。分析结果与振动台试验结果吻合,在第一共振频率附近存在定量差异。研究局限/启示本研究的范围仅限于多孔挡板在范围摇摆运动和三种不同填充水平下的性能。多孔挡板的性能包括雷诺数相关阻力系数,以探讨晃动槽内的阻尼效应。具有低孔隙率的多孔挡流板在许多工程应用中具有重要的意义。多孔挡板阻力系数是研究晃动舱挡板阻尼效应的重要参数。由此,得到了矩形槽内液体晃动的雷诺数解析解,以及孔隙率相关阻力系数(模型1)和孔隙率相关阻力系数多孔折流板(模型2)的性能。在不同的激励频率下,包括前四种振动共振模式,通过一系列的振动台晃动实验,验证了该模型的试验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of the drag coefficient on the performance of vertical porous baffles in a sloshing tank
Purpose The present work involves analytical and experimental investigation of sloshing in a two-dimensional rectangular tank including the effect of porous baffles to control and/or reduce the wave motion in the sloshing tank. The purpose of this study is to assess the analytical solutions of the drag coefficient effect on porous baffles performance to track free surface motion variation in the sloshing tank by comparison with experimental shake table tests under a range of sway excitation. Design/methodology/approach The linear second-order ordinary differential equations for liquid sloshing in the rectangular tank were solved using Newmark’s beta method and obtained the analytical solutions for liquid sloshing with dual vertical porous baffles of full submergence depths in a sway-oscillated rectangular tank following the methodology similar to Warnitchai and Pinkaew (1998) and Tait (2008). Findings The porous baffles significantly reduce wave elevation in the varying filled levels of the tank compared to the baffle-free tank under the range of excitation frequencies. It is observed that the Reynolds number-dependent drag coefficient for porous baffles in the tank can significantly reduce the sloshing elevations and is found to be effective to achieve higher damping compared to the porosity-dependent drag coefficient for porous baffles in the sloshing tank. The analytical model’s response to free surface elevation variations in the sloshing tank was compared with the experiment’s test results. The analytical results matched with shake table test results with a quantitative difference near the first resonant frequency. Research limitations/implications The scope of the study is limited to porous baffles performance under range sway motion and three different filling levels in the tank. The porous baffle performance includes Reynolds number dependent drag coefficient to explore the damping effect in the sloshing tank. Originality/value The porous baffles with low-level porosities in the sloshing tank have many engineering applications where the first resonant mode of sloshing in the tank is more important. The porous baffle drag coefficient is an important parameter to study the baffle’s damping effect in sloshing tanks. Hence, obtained analytical solution for liquid sloshing in the rectangular tank with Reynolds number as well as porosity-dependent drag coefficient (model 1) and porosity-dependent drag coefficient porous baffles (model 2) performance is discussed. The model’s test results were validated using a series of shake table sloshing experiments for three fill levels in the tank with sway motion at various excitation frequencies covering the first four sloshing resonant modes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Engineering Design and Technology
Journal of Engineering Design and Technology ENGINEERING, MULTIDISCIPLINARY-
CiteScore
6.50
自引率
21.40%
发文量
67
期刊介绍: - Design strategies - Usability and adaptability - Material, component and systems performance - Process control - Alternative and new technologies - Organizational, management and research issues - Human factors - Environmental, quality and health and safety issues - Cost and life cycle issues - Sustainability criteria, indicators, measurement and practices - Risk management - Entrepreneurship Law, regulation and governance - Design, implementing, managing and practicing innovation - Visualization, simulation, information and communication technologies - Education practices, innovation, strategies and policy issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信