{"title":"烧结原料中化学成分数据输入的正则化多输出高斯卷积方法","authors":"Wei Liu, Cailian Chen, Junpeng Li, Xinping Guan","doi":"10.1049/2023/6647291","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Chemical contents, the important quality indicators are crucial for the modeling of sintering process. However, the lack of these data can result in the biasedness of state estimation in sintering process. It, thus, greatly reduces the accuracy of modeling. Although there are some general imputation methods to tackle the data lackness, they rarely consider the interoutputs correlation and the negative impacts caused by incorrect prefilling. In this article, a novel sparse multioutput Gaussian convolution process (MGCP) modeling framework is proposed for data imputation. MGCP can flexibly mine the relationships between the outputs by a convolution of a sharing latent function and different Gaussian kernels. Moreover, the penalization terms are designed to weaken the false relationship between these outputs. To generalize the MGCP to a long-period case, dynamic time warping term is introduced to keep the global similarity between the original and estimated time series. Compared with several existing methods, the proposed method shows great superiority in sintering raw material contents estimation with real-world data.</p>\n </div>","PeriodicalId":56301,"journal":{"name":"IET Signal Processing","volume":"2023 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2023/6647291","citationCount":"0","resultStr":"{\"title\":\"Regularized Multioutput Gaussian Convolution Process for Chemical Contents Data Imputation in Sintering Raw Materials\",\"authors\":\"Wei Liu, Cailian Chen, Junpeng Li, Xinping Guan\",\"doi\":\"10.1049/2023/6647291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Chemical contents, the important quality indicators are crucial for the modeling of sintering process. However, the lack of these data can result in the biasedness of state estimation in sintering process. It, thus, greatly reduces the accuracy of modeling. Although there are some general imputation methods to tackle the data lackness, they rarely consider the interoutputs correlation and the negative impacts caused by incorrect prefilling. In this article, a novel sparse multioutput Gaussian convolution process (MGCP) modeling framework is proposed for data imputation. MGCP can flexibly mine the relationships between the outputs by a convolution of a sharing latent function and different Gaussian kernels. Moreover, the penalization terms are designed to weaken the false relationship between these outputs. To generalize the MGCP to a long-period case, dynamic time warping term is introduced to keep the global similarity between the original and estimated time series. Compared with several existing methods, the proposed method shows great superiority in sintering raw material contents estimation with real-world data.</p>\\n </div>\",\"PeriodicalId\":56301,\"journal\":{\"name\":\"IET Signal Processing\",\"volume\":\"2023 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2023/6647291\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/2023/6647291\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/2023/6647291","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Regularized Multioutput Gaussian Convolution Process for Chemical Contents Data Imputation in Sintering Raw Materials
Chemical contents, the important quality indicators are crucial for the modeling of sintering process. However, the lack of these data can result in the biasedness of state estimation in sintering process. It, thus, greatly reduces the accuracy of modeling. Although there are some general imputation methods to tackle the data lackness, they rarely consider the interoutputs correlation and the negative impacts caused by incorrect prefilling. In this article, a novel sparse multioutput Gaussian convolution process (MGCP) modeling framework is proposed for data imputation. MGCP can flexibly mine the relationships between the outputs by a convolution of a sharing latent function and different Gaussian kernels. Moreover, the penalization terms are designed to weaken the false relationship between these outputs. To generalize the MGCP to a long-period case, dynamic time warping term is introduced to keep the global similarity between the original and estimated time series. Compared with several existing methods, the proposed method shows great superiority in sintering raw material contents estimation with real-world data.
期刊介绍:
IET Signal Processing publishes research on a diverse range of signal processing and machine learning topics, covering a variety of applications, disciplines, modalities, and techniques in detection, estimation, inference, and classification problems. The research published includes advances in algorithm design for the analysis of single and high-multi-dimensional data, sparsity, linear and non-linear systems, recursive and non-recursive digital filters and multi-rate filter banks, as well a range of topics that span from sensor array processing, deep convolutional neural network based approaches to the application of chaos theory, and far more.
Topics covered by scope include, but are not limited to:
advances in single and multi-dimensional filter design and implementation
linear and nonlinear, fixed and adaptive digital filters and multirate filter banks
statistical signal processing techniques and analysis
classical, parametric and higher order spectral analysis
signal transformation and compression techniques, including time-frequency analysis
system modelling and adaptive identification techniques
machine learning based approaches to signal processing
Bayesian methods for signal processing, including Monte-Carlo Markov-chain and particle filtering techniques
theory and application of blind and semi-blind signal separation techniques
signal processing techniques for analysis, enhancement, coding, synthesis and recognition of speech signals
direction-finding and beamforming techniques for audio and electromagnetic signals
analysis techniques for biomedical signals
baseband signal processing techniques for transmission and reception of communication signals
signal processing techniques for data hiding and audio watermarking
sparse signal processing and compressive sensing
Special Issue Call for Papers:
Intelligent Deep Fuzzy Model for Signal Processing - https://digital-library.theiet.org/files/IET_SPR_CFP_IDFMSP.pdf