Rendra Soekarta, Suhardi Aras, None Ahmad Nur Aswad
{"title":"音乐类型分类CNN分类器的超参数优化","authors":"Rendra Soekarta, Suhardi Aras, None Ahmad Nur Aswad","doi":"10.29207/resti.v7i5.5319","DOIUrl":null,"url":null,"abstract":"Playing music through a digital platform that has a large database of songs requires automated classification of music genres, highlighting the need to develop a model for music genre classification that is more efficient and accurate. This study evaluated the hyperparameters in the music genre classification process using CNN in the GTZAN dataset with 30-second duration data optimized using MFCC feature extraction. The model that is formed with a time of 3 (three) seconds classifies music genres in the first 3 seconds of music. This model has a high potential for error because the first 3 seconds of initial music are varied and cannot be used as a benchmark in determining music genres. This study performed hyperparameters on batch size, epoch, and split data set variables with various scenarios. The highest precision result was obtained at 72% with a data split of 85%:15%, 32 batch sizes, and 500 epochs.","PeriodicalId":435683,"journal":{"name":"Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)","volume":"360 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hyperparameter Optimization of CNN Classifier for Music Genre Classification\",\"authors\":\"Rendra Soekarta, Suhardi Aras, None Ahmad Nur Aswad\",\"doi\":\"10.29207/resti.v7i5.5319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Playing music through a digital platform that has a large database of songs requires automated classification of music genres, highlighting the need to develop a model for music genre classification that is more efficient and accurate. This study evaluated the hyperparameters in the music genre classification process using CNN in the GTZAN dataset with 30-second duration data optimized using MFCC feature extraction. The model that is formed with a time of 3 (three) seconds classifies music genres in the first 3 seconds of music. This model has a high potential for error because the first 3 seconds of initial music are varied and cannot be used as a benchmark in determining music genres. This study performed hyperparameters on batch size, epoch, and split data set variables with various scenarios. The highest precision result was obtained at 72% with a data split of 85%:15%, 32 batch sizes, and 500 epochs.\",\"PeriodicalId\":435683,\"journal\":{\"name\":\"Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)\",\"volume\":\"360 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29207/resti.v7i5.5319\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29207/resti.v7i5.5319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hyperparameter Optimization of CNN Classifier for Music Genre Classification
Playing music through a digital platform that has a large database of songs requires automated classification of music genres, highlighting the need to develop a model for music genre classification that is more efficient and accurate. This study evaluated the hyperparameters in the music genre classification process using CNN in the GTZAN dataset with 30-second duration data optimized using MFCC feature extraction. The model that is formed with a time of 3 (three) seconds classifies music genres in the first 3 seconds of music. This model has a high potential for error because the first 3 seconds of initial music are varied and cannot be used as a benchmark in determining music genres. This study performed hyperparameters on batch size, epoch, and split data set variables with various scenarios. The highest precision result was obtained at 72% with a data split of 85%:15%, 32 batch sizes, and 500 epochs.