硅和碳化硅增强镍电沉积涂层对露天丁烷/丙烷燃烧Xc100碳钢的抗氧化性能

Désiré M. K. Abro, Collette A. Djassou, Yao J. Adjoumani, Benjamin K. Yao
{"title":"硅和碳化硅增强镍电沉积涂层对露天丁烷/丙烷燃烧Xc100碳钢的抗氧化性能","authors":"Désiré M. K. Abro, Collette A. Djassou, Yao J. Adjoumani, Benjamin K. Yao","doi":"10.13005/msri/200204","DOIUrl":null,"url":null,"abstract":"The protection of XC100 steel against oxidation due to butane/propane combustion by the mean of nickel (Ni), Nickel-Silicon (Ni-Si), and Nickel-Silicon carbide (Ni-SiC) electrodeposited coatings is reported. Gravimetric and microstructural characterizations of coatings after direct exposure to the gas flame were conducted. The results show that Ni-SiC coating improves the protection against oxidation of the underlying steel XC100 by decreasing the rate of weight gain by about 20 times against 13 times for Ni due to the decomposition of SiC particles in the boundaries of the coaxial grains network. Besides, the preferential oxidation of silicon particles to SiO2 into the nickel matrix revealed by EDS-X analysis confers stability to Ni-Si coating although its catching of mass is slightly higher than that of Ni-SiC. The charge transfer resistance Rct and the oxide electrical resistance Roxide extracted from Electrochemical Impedance spectroscopy agreed with gravimetric and microstructural observations.","PeriodicalId":18247,"journal":{"name":"Material Science Research India","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performances of Silicon and Silicon Carbide Reinforced Nickel Electrodeposited Coatings Against Oxidation of Xc100 Carbon Steels Exposed to Butane/Propane Combustion in the Open Air\",\"authors\":\"Désiré M. K. Abro, Collette A. Djassou, Yao J. Adjoumani, Benjamin K. Yao\",\"doi\":\"10.13005/msri/200204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The protection of XC100 steel against oxidation due to butane/propane combustion by the mean of nickel (Ni), Nickel-Silicon (Ni-Si), and Nickel-Silicon carbide (Ni-SiC) electrodeposited coatings is reported. Gravimetric and microstructural characterizations of coatings after direct exposure to the gas flame were conducted. The results show that Ni-SiC coating improves the protection against oxidation of the underlying steel XC100 by decreasing the rate of weight gain by about 20 times against 13 times for Ni due to the decomposition of SiC particles in the boundaries of the coaxial grains network. Besides, the preferential oxidation of silicon particles to SiO2 into the nickel matrix revealed by EDS-X analysis confers stability to Ni-Si coating although its catching of mass is slightly higher than that of Ni-SiC. The charge transfer resistance Rct and the oxide electrical resistance Roxide extracted from Electrochemical Impedance spectroscopy agreed with gravimetric and microstructural observations.\",\"PeriodicalId\":18247,\"journal\":{\"name\":\"Material Science Research India\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Material Science Research India\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13005/msri/200204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Material Science Research India","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13005/msri/200204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用镍(Ni)、镍硅(Ni- si)和镍碳化硅(Ni- sic)镀层对XC100钢进行了丁烷/丙烷燃烧氧化防护。对直接暴露在气体火焰下的涂层进行了重量和显微组织表征。结果表明,Ni-SiC涂层使XC100钢的增重速率降低了约20倍,而Ni涂层由于SiC颗粒在同轴晶粒网络边界的分解而使增重速率降低了13倍。此外,EDS-X分析显示,硅颗粒优先氧化成SiO2进入镍基体,使Ni-Si涂层具有稳定性,但其质量捕获率略高于Ni-SiC涂层。电化学阻抗谱提取的电荷转移电阻Rct和氧化物电阻Roxide与重量和微观结构观察结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performances of Silicon and Silicon Carbide Reinforced Nickel Electrodeposited Coatings Against Oxidation of Xc100 Carbon Steels Exposed to Butane/Propane Combustion in the Open Air
The protection of XC100 steel against oxidation due to butane/propane combustion by the mean of nickel (Ni), Nickel-Silicon (Ni-Si), and Nickel-Silicon carbide (Ni-SiC) electrodeposited coatings is reported. Gravimetric and microstructural characterizations of coatings after direct exposure to the gas flame were conducted. The results show that Ni-SiC coating improves the protection against oxidation of the underlying steel XC100 by decreasing the rate of weight gain by about 20 times against 13 times for Ni due to the decomposition of SiC particles in the boundaries of the coaxial grains network. Besides, the preferential oxidation of silicon particles to SiO2 into the nickel matrix revealed by EDS-X analysis confers stability to Ni-Si coating although its catching of mass is slightly higher than that of Ni-SiC. The charge transfer resistance Rct and the oxide electrical resistance Roxide extracted from Electrochemical Impedance spectroscopy agreed with gravimetric and microstructural observations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信